EURAAP VIRTUAL CENTRE OF EXCELLENCE
This website is not maintained anymore and is kept visible for archiving purpose only. You are invited to visit www.euraap.org for all information on EurAAP activities
 


EurAAP Activities

Login
 

DISSEMINATION
Help

ACE Results ARTIC Project Books CARE Project EDX Journals

Title Authors Publisher Year
Multigrid Finite Element Methods for Electromagnetic Field Modeling Yu Zhu, Andreas C. Cangellaris John Wiley & Sons 2006


 

Multigrid Finite Element Methods for Electromagnetic Field Modeling

 

Yu Zhu, Andreas C. Cangellaris

John Wiley & Sons

2006

408 pages

 

Description

 

This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods.

Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers.

Among the highlights of coverage are:
* Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems
* Broadband, robust numerical modeling of passive microwave components and circuits
* Robust, finite element-based modal analysis of electromagnetic waveguides and cavities
* Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems
* Finite element modeling of electromagnetic waves in periodic structures

The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness.

This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

 

Table of Contents

 

Front Matter

Introduction

Hierarchical Basis Functions for Triangles and Tetrahedra

Finite Element Formulations of Electromagnetic BVPs

Iterative Methods, Preconditioners, and Multigrid

Nested Multigrid Preconditioner

Nested Multigrid Vector and Scalar Potential Preconditioner

Hierarchical Multilevel and Hybrid Potential Preconditioners

Krylov-Subspace Based Eigenvalue Analysis

Two-Dimensional Eigenvalue Analysis of Waveguides

Three-Dimensional Eigenvalue Analysis of Resonators

Model Order Reduction of Electromagnetic Systems

Finite Element Analysis of Periodic Structures


Identities and Theorems from Vector Calculus


Index


Attachments
File Size Date
No attachments
« Back to area
 
Focus On



Coordinating the Antenna Research in Europe

Antenna research and Technology for the Intelligent Car



 
© 2018 EurAAP™ VCE. All rights reserved. Europe