

An introduction
 to the

Electromagnetic Data Exchange
language

February 2009

Issue 3

Poul Erik Frandsen1 and Marco Sabbadini2

1TICRA, Laederstraede 34, 1201 Copenhagen K, Denmark, Email: ticra@ticra.com
2European Space Agency, Keplerlaan 1, 2201AZ Noordwiijk, The Nederlands, Email: marco.sabbadini@esa.int

TICRA Ref.: S1326-14
ESA Ref.: EWP-2345

The contents of this document do NOT represent approved ESA procedures, practices, or standards. This document or any part of it may not
be issued in any form other than the present without the approval of the European Space Agency.

mailto:ticra@ticra.com
mailto:marco.sabbadini@esa.int

An introduction to the Electromagnetic Data Exchange language

Copyright © 2008 European Space Agency and TICRA AS

Written by Poul Erik Frandsen, Marco Sabbadini
Graphics by Poul Erik Frandsen, Marco Sabbadini
Printed by ESTEC Reproduction Services

First edition April 2008
Second issue October 2008

An introduction to the Electromagnetic Data Exchange language

TABLE OF CONTENTS

1. INTRODUCTION ..1
2. DATA EXCHANGE BASICS..2
3. AN OUTLINE OF THE EDX..4

3.1 THE MEANING OF DATA – THE DATA DICTIONARIES ..6
3.2 THE FORM OF DATA – THE EML...7
3.3 THE HANDLING OF DATA – THE EDI...8
3.4 EDX COMPANION TOOLS ..9

4. DATA DICTIONARIES ..10
4.1 THE STRUCTURE OF PHYSICAL QUANTITIES..10
4.2 THE STRUCTURE OF DATA DICTIONARIES ...12

4.2.1 Mathematical support...13
4.2.2 Physical quantities ...13
4.2.3 Representation conventions..14

4.3 A DATA DICTIONARY EXAMPLE..15
4.4 ALTERNATIVE REPRESENTATIONS OF SIMPLE QUANTITIES18
4.5 MORE COMPLEX DATA STRUCTURES ..18

5. THE ELECTROMAGNETIC MARK-UP LANGUAGE.....................................19
5.1 (ABSOLUTE) XML BASICS ...19
5.2 THE EML TYPES ..20

5.2.1 The header..21
5.2.2 The Declarations and the EML <Variable> ..22
5.2.3 The <Data> element ..27
5.2.4 The <Application_data> element...27
5.2.5 Organising a data set with EML ..28
5.2.6 Advanced data structuring ...29
5.2.7 EML syntax in Extended Backus-Naur Form ...29

6. ELECTROMAGNETIC DATA INTERFACE..30
6.1 OUTLINE OF THE EDI...30
6.2 EDI LEVEL 0: BASIC FUNCTIONS. ..31

6.2.1 File functions..31
6.2.2 The header functions ..32
6.2.3 Managing <Variable>s in <Declarations>. ...32
6.2.4 Output – creating variables and saving data in EDI files34
6.2.5 Input of data from EDI files..41

7. FINAL REMARKS ..46
8. REFERENCES ...47

i

An introduction to the Electromagnetic Data Exchange language

1. Introduction

The Electromagnetic Data Exchange (EDX) language system has been developed in the
EAML and ACE projects [1, 2]. Although not accepted by any formal body, it is the goal for
it to become a reference for data exchange among electromagnetic modelling software tools,
at least in Europe. The EDX background and the requirements are covered in a number of
reports and conference papers to which the interested reader is referred [5,7,8,11,18].

The diversified nature of electromagnetic modelling techniques and the quest for the best
modelling solutions for each problem encountered, make it necessary to use different tools in
combination to take advantage of the most efficient method on each part of an antenna
system at different stage of its design and development cycle. The exchange of data among
the software tools is therefore a very important aspect of antenna modelling, both for research
activities and for industrial use, and the primary approach used for this purpose is the
exchange of data in files.

Most antenna modelling tools use proprietary data formats, while they all handle the same
physical entities: field, currents, geometry, and transforming data from one format to the
other or writing functions to do so is a costly chore. It is quite evident that a common data
format, widely accepted within the antenna community, would lead to much easier
interchange of data, with the potential of making a much wider range of modelling options
available to all its members.

The need for common way to describe physical objects and quantities involved in the
electromagnetic modelling of antennas has been stressed by many people at least for the past
20 years or so. Actions to fulfil this need have been promoted since the early 1990’s [5].
More recently the MADS project, funded under the EU-FP5 programme, has produced a first
draft for a common format, the Electromagnetic Data Format (EDF). Unfortunately, the
limited resources available resulted in limited flexibility and the absence of a plane-text data
file option. To overcome these limitations the Antenna Software Initiative of the Antenna
Centre of Excellence (an EU-FP6 Network of Excellence) and of the European Antenna
Modelling Library team, working under ESA contract, have joined forces to develop the
Electromagnetic Data Exchange language.

This report is intended as an introduction for those who will actually integrate the EDX in
their software for day to day use. In section 2 the three main components of the EDX are
introduced. In the sub-sequent sections the three main elements of the EDX are discussed and
it is shown how the system can be integrated in existing software. This can be done in a quite
simple manner or more advanced solutions can be made depending on the required level of
flexibility.

 1

An introduction to the Electromagnetic Data Exchange language

2. Data exchange basics

The Electromagnetic Data Exchange language is devoted to simplify the transfer of
information among electromagnetic modelling tools with the additional requirement to use a
form which is also convenient for the human user.

Information transfer has been studied in detail for many decades and there are plenty of
model from which is possible to draw inspiration when attempting to define a new language
for a certain class of data, for instance the ISO/OSI model for communication protocol [3].
Since the objective of EDX is to allow the transfer of information among different parties, the
data to be handled with EDX are static, i.e. there are not supposed to be manipulated in the
form used they have. Of course, the closer they are to a form suitable for processing the
better, as this minimises the cost of reading and writing them, but compromises going in the
opposite direction are to be accepted from the outset when dealing with a language to
exchange data among very diverse antenna modelling and measurement systems.

A very basic example is the fact that different programming languages store matrices with
different ordering of the indices and only one can be used as reference for the language.
Incidentally, EDX is structured in such a way that this particular aspect is invisible to a
developer using the I/O library that implements it. Still if the indices have to be reordered
there is inevitably a small performance penalty with respect to the case where no reordering
occurs.

There main elements are essential to fully define the data exchange protocol for static data:
meaning, structure and layout, roughly corresponding to the two top layers of the ISO/OSI
model: application and presentation. The remaining five, dealing with the detail of data
transport from source to user, are left to the computing platform by using the facilities offered
by them.

The meaning of data is probably the most difficult part, it is usually very well understood but
it is also quite difficult to explicitly formulate it as this entails attention to a lot of details
which are often implicitly assumed, while for transparency and consistency it is important to
have them completely spelled out in the definition of the language.

The structure of data reflects the physical background of data, which dictates the best way to
organise them to make sure they can be easily understood by humans and handled, as easily
as possible, by computer programs.

The layout of data requires serious thinking to select a flexible and robust solution, including
the selection of a storage format to put them on computer files or other digital storage and
transmission means. However the power offered by information technology makes it possible
to implement very flexible and elegant solutions at this level with a relatively small effort.

Figure 2.1 illustrates how these three elements can be accommodated in a relatively simple
structure. Meaning is captured by using appropriate naming and structuring the information
in different levels, each capturing the specifics of one element. For example, the presence of
an element named ScanRange in the Field object is used to show that the latter is a function of

 2

An introduction to the Electromagnetic Data Exchange language

the first, while at the next level the ScanRange is declared to be spherical and to have three
elements, two being angles and the third a distance.

The use of multiple levels also introduces flexibility. It is quite easy to imagine changing the
scan range from spherical to rectangular by just pointing to a different definition. Therefore it
is also possible to extend at a later stage the number of possible scan range types by just
adding new ones without compromising existing data sets.

Finally the structure also suggests a layout. Translating the boxes into independent blocks of
data and labelling them with their names produces a very readable layout. Each element can
also be given a name and the link to lover levels can be put next to it.

In the artificial intelligence domain this type of systematic representation of the elements of a
specific domain of knowledge is called ontology. The building rules well known and they are
quite similar to the rules governing human languages and the communication of meaning
between human beings (linguistic and semiotic). These rules together with the practical
objectives of a data exchange facility have been kept well in mind while designing and
implementing EDX.

Field

Frequency

H

ScanRange
Projection

E

ScanRange:Spherical

Theta
Phi
R

Projection:Spherical

“theta”, “phi”, “r”

Angle

Angle

Distance

Class Subclass

Values

Class components

Class

Figure 2.1 – The content of a simple data set to exchange field data

 3

An introduction to the Electromagnetic Data Exchange language

3. An outline of the EDX

When approaching the development of a data exchange language, three key questions must
be considered:

• What data shall be handled?

• How shall the data appear in the file?

• How shall software tools access these files?

Since the EDX language should answer these questions on behalf of a rather large community
of scientists and engineers, it was felt necessary to lay down a small set of basic requirements
that could be shared by many. The EDX development has been the following tenets:

1. Capability of handling of most common data sets in the field of Antenna and
Electromagnetic Engineering.

2. Possibility to tailor and extend the data sets without breaking the validity of data
files.

3. Easy to understand human-readable data files option.
4. Flexible data access to support the different needs of a wide variety of algorithms,

tools and design procedures.
5. Ability to handle multiple representations of the same physical or mathematical

quantity.
6. Possibility to store meta-data (author, date, comments) as well as special private data

required by some tools.
7. Openness to future revisions and extensions and robustness to withstand the changes

involved.
8. Possibility to implement an open and freely available library for access to data.
9. Possibility to handle large amounts of data via interfaces to high performance

standards.
10. Platform independence –with respect to both software and hardware.

Many robust data exchange solutions compatible with these requirements are available thanks
to the large effort devoted worldwide to this crucial issue of the information technology era.
Selecting the right starting point already requires a significant ingenuity. Past experience
within the antenna community has shown that a simple format based on a line-by-line
description of the file contents would be severely limited. At the same time, very flexible
formats having programming-language-like data constructors have proven to be rather
difficult to use for the average developer, while high-performance solutions, like NetCDF [6]
or HDF5 [10], pose some accessibility problems for non-expert users. The need for human-
readable files combined with that of handling large amount of data lead to the choice of XML
(eXtensible Mark-up Language) [4], the leading reference for text-based data exchange, for
small and medium sized data sets with the option to used high-performance formats for large
ones.

 4

An introduction to the Electromagnetic Data Exchange language

An XML-based format satisfies all the above requirements, but number 9, and benefits of a
well-established and very general framework, so it is an almost perfect candidate.
Unfortunately a direct use of XML requires starting with an agreement on the representations
of all quantities involved. Further analysis of the needs showed that it would have been
impossible to produce such common representation in an acceptable timeframe. Building on
the positive experience made with NetCDF in the EDF development, it was then decided to
devise a simple, yet sufficiently flexible and open, language based on XML able to support
an incremental growth and consolidation of the definitions. This also offered the opportunity
to comply with requirement 9, by ensuring that the information carried by the new language
would be compatible with existing high-performance data exchange standard, like NetCDF
and HDF5.

Most often the data to be exchanged, like a tabulated antenna pattern, are a series of numbers
with no specific meaning on their own. Their meaning needs to be conveyed separately,
either using a fixed format specified by some document or by attaching this information to
the data. Since this information is the most relevant for the human reader, EDX goes one step
beyond. It starts by specifying the meaning and structure of data and then gives the data. A
neutral, quite general and simple grammar, easily expressed in XML, has been developed to
describe the content of data files, the Electromagnetic Mark-up Language (EML). It features
the basic elements required to represent generic electromagnetic quantities, like the ability to
specify scalar, vector and matrix quantities and to associate measurement units to them.

EML only provides the tools to specify how the information is conveyed, e.g. how different
quantities are called or and structured, but it does not specify names and structures. Clearly a
common data exchange language requires that also these elements are agreed. One major
strength and weakness of natural language is that misunderstandings occur very easily just
because the meaning of words and sentence structures cannot be strictly codified. A set of
Electromagnetic Data Dictionaries (EDD’s) establishes the lexicon of the exchange language,
i.e. how to convey the actual meaning using the EML grammar. For example, the possible
types of component projections and sampling grids for a far field are uniquely defined to
make information exchange about antenna patterns possible.

Finally, a software library, the Electromagnetic Data Interface (EDI), allows standardised
access to data in the EDX language. Of course, having the EML and the EDD’s in place
would be sufficient to guarantee successful data exchange. Still everybody would have to
write functions to read and write the EDX files, with an enormous duplication of effort,
simple mistakes making the actual exchange difficult and, last but not least, an open door to
“slightly twist” the language to fit some specific purpose. A software library relieves
developers from the burden to write their own access functions, avoids mistakes and provides
a common baseline to which any other implementation can be compared for compliance with
the EDX reference.

The structure of EDX can then be summarised using the following symbolic formula:

EDX = EDD’s + EML+ EDI

Furthermore a set of utilities, the EDX Companion Tools, is under development to help the
use and extension of EDX.

 5

An introduction to the Electromagnetic Data Exchange language

3.1 The meaning of data – the Data Dictionaries

In a Data Exchange Standard the Data Dictionary defines the meaning of data and the
conventions for their exchange. The data dictionary defines exactly and in detail all the
elements that shall appear in a data set.

Note, that the term “data set” is used – not “files”. A data set is a collection of related simple
data elements which as a whole models a physical entity such as a field, a bicycle tire or any
other physical item. The data set may be in a file, it may be transmitted over a channel or it
may reside in a memory area. For the time being it is assumed that a file only contain one
data set. In section 4 it will be clear that the EDX enables several data sets to appear in the
same file by using an approach similar to directories or folders in computer file systems.

While EML defines the grammar, a data dictionary contains and defines the ‘words’ to be
used to describe the main physical entity, be that a field or a bicycle tire. In other words, it
establishes the precise meaning of the data found in the data set, how they are represented
numerically and the conventions adopted for their exchange; For instance, the implied time
dependence in spectral representations (e.g. e+jωt).

A physical entity is seldom atomic. Therefore each data set contains a number of elements,
each one having its own definition and representation. Often these lower level entities appear
in different data sets. The most obvious example is frequency; another one are reference
systems. It is worth noting that in most cases these lower level entities have a more abstract
nature that he main one,

The definition of a data dictionary is a lengthy and rather complex matter – especially if
many do participate to it as required for a common reference language. To streamline the
definition of EDX, the whole ‘universe’ of antenna modelling quantities has been separated
in homogeneous ‘sub-universes’, like fields, currents, geometries, which are the object of
separate data dictionaries. This choice raises the issue of coherence across the different
dictionaries, for example ensuring that the frequency quantity has the same definition in all of
them. At the same time it is necessary to ensure that the physical and mathematical meaning
associated to a given name is univocally defined across the entire ‘universe’ [5]. A global
data dictionary is used for this purpose.

Six data sets have been initially identified. Namely:

1. Fields (near, far and spherical wave expansion)
2. Induced currents on various geometries
3. Green’s function for layered structures
4. Circuit parameters – [S], [Y] and [Z]
5. Modal expansions
6. Geometry.

Currently the lexicon required for fields (near, far and spherical wave expansion) and
required for currents and meshes has been fully defined [12,13], while a draft exists for the
global dictionary involving all the six data sets listed above.

 6

An introduction to the Electromagnetic Data Exchange language

3.2 The form of data – the EML

The definition of the language grammar is a very delicate step as it has a huge impact on how
the quantities defined by the Data Dictionaries will be described in practice and may actually
pose severe limits to it.

An extensive analysis was made [7,9] leading to the identification of two fundamental and
very common data structures: n-dimensional matrices, to represent nD-tensor fields, and
hierarchical compounds, to represent the logical and lexical connection among data. The
grammar selected to describe their structure is inspired to NetCDF [6] and, as already said, it
is a specialisation of XML.

The key idea is that a single data entity, the variable, is sufficient to the static representation
of data stored into files. A variable may or not depend on other ones, via its domain, thus
allowing the representation of sampled functions of n variables. A variable may have multiple
components, each one of them being multi-dimensional. For example, an electromagnetic
field sampled on a plane at multiple frequencies can be represented as:

Variable emField
 Domain frequency
 Domain samplingX
 Domain samplingY
 Component E (complex, dimension=3, unit=V/m)
 Component H (complex, dimension=3, unit=A/m)
end

A variable may also have no domains and its components may just be references to other
variables, allowing the creation of hierarchies of aggregates. For example:

Variable aDouble ReflectorAntenna
 Component feedArray
 Component subReflector
 Component mainReflector
end

Note that, to make them more immediate, the two examples above do not use the actual EML
grammar but a simplified version of it. The detailed discussion in section 4 is based on the
actual grammar and complete description of it can be found in [4].

The examples above highlight an important feature of EDX, if an extra domain or component
is added to a variable, a tool not knowing about it is still able to use the rest of the variable
data, just ignoring the extra information. In the same way it is possible to add extra variables
to a data set without compromising its usability from unaware tools. This is a fundamental
improvement with respect to usual situation.

EML files are organized in four main sections: Header, Declarations, Data and Application
Data. The Header section contains general data like author, date, EDI version, etc. The
Declarations section contains the definition of all variables as well as the values for small-
sized ones. Larger amount of numerical data are found in the Data section, arranged in

 7

An introduction to the Electromagnetic Data Exchange language

blocks, one for each of variable. Finally, the Application Data section is available for tools
that need to save private data.

3.3 The handling of data – the EDI

The third element of EDX is a software library providing all functions required to access
data. The Electromagnetic Data Interface is a relatively small library (a few thousands lines)
written in C++ and equipped with application programming interfaces in C++, FORTRAN90
and MATLAB® (only Level 2 at the moment).

The library has a layered structure with each layer offering more advanced features compared
to the lower one.

Application (Antenna/EM software)

EDI Level 2: Defined aggregates: Currents, Far Fields, etc.

EDI Level 1: Data Selection Services: Slicing, Sorting,

EDI Level 0: Basic structuring, Multi-Dimensional Variables,
File and Header Management

EDI ToolKit: Atomic Features, Low-level IO

I/O File Format Switch

XML Library NetCDF/HDF

EML File File

..........

File

Figure 3.1 – The overall structure of the Electromagnetic Data Interface (EDI)

The main purpose of EDI is to simplify writing computer programmes using EDX, the
highest level offers a single call access to complete data sets (although with very limited
functionality) and more and more detailed access is available working at lower levels. The
EDI Toolkit is a foundation layer and it is not accessible through the application
programming interface.

As clearly shown in figure 3.1 all functions offered by the library are independent from the
actual format in which the data file is written, so that different ones can be used with no
changes in the modelling tool.

 8

An introduction to the Electromagnetic Data Exchange language

3.4 EDX Companion Tools

On top of the tree core elements described so far, it is the intention to offer a number of
complementary utilities to enhance the use of EDX. These utilities are being developed and
include:

1. EDX Tool: an I/O function generator
2. A generic EDX data browser
3. A generic EDX data visualisation tool
4. A validation tool for EDX implementations.

Furthermore the possibility to develop a CAD data import filter associated to a Geometry and
Materials Data Dictionary is being explored.

The EDX tool is a code generator that takes as input a formal definition of a data dictionary,
written in a language very close to EML, and a set of programming language fragments
corresponding to the different constructs of the language and produces I/O functions for the
data dictionary quantities by assembling and completing the fragments.

The Generic EDX data browser allows the navigation through data stored in the EDX
language. The data organisation and values are visualised in text form in a way that makes
them easy to understand for human users with a good knowledge of antenna engineering and
possibly no knowledge of computer science and software engineering.

The Generic EDX data visualisation tool displays and prints the data stored in the EDX
language. The data are visualised in graphic form in a way that makes them easy to
understand for antenna engineers and following the common practices of this discipline.

The Validation tool for EDX implementations performs the validation of I/O functions
providing access to data stored in the EDX language, providing a detailed report of all non-
compliances found in the files generated by them. It is accompanied by a set of reference data
files in the EDX formats to check input capabilities of other tools.

The CAD data import filter is intended to be a simple tool able to translate geometrical
descriptions found in CAD files and directly compatible with a Geometry and Materials Data
Dictionary into an EML file. Some advanced capabilities, like geometry healing and a smart
visualisation of 3D shapes may also be included.

 9

An introduction to the Electromagnetic Data Exchange language

4. Data Dictionaries

The main purpose of a data dictionary is to define the information content of a data set.
Typically the information relates directly to the values of a physical quantity and the
objective of the data dictionary is to ensure that the meaning of all values is clearly and
univocally defined. Most of the physical quantities involved in antenna engineering have a
rather complicated structure, which inevitably inherited by their mathematical and numerical
representations. The data dictionary must specify the complete structure and provide
accessory information to make data exchange easy.

For example, the electromagnetic field is usually represent by engineers has an E and an H
component, each being 3D vector quantities. Then depending on the type of representation,
time or space domain, each vector component is a real or a complex quantity. Further to this,
to fully qualify the field, say in the spectral domain, it is necessary to specify the frequency at
which it is given, the notation used for the time dependency, which type of projection has
been chosen for the vector components and, last but not least, the sampling grid. All these
aspects are clearly defined by the Field Data Dictionary [12]. This field example will be used
throughout this section to illustrate the various aspects involved in the definition of data
dictionaries.

The ESA report “System Analysis and Requirements for an Electromagnetic Data Exchange
Standard” [7] contains a lot more details and examples on the Data Dictionary theme. Section
III “Intender readership and usage” gives an indication of where to find the information most
relevant to the building of data dictionaries. A short description of a possible building
procedure is found in Part 3, Section 5.

4.1 The structure of physical quantities
The large majority of physical quantities used in antenna engineering have the mathematical
structure of n-D tensor field defined over some domain. In most cases the n-D tensor is mono
dimensional, i.e. the quantity is a vector field. They are usually parameterised by some
additional quantity, like the frequency for spectral domain representation of fields. In the end,
they can be seen as n-valued functions defined over p-dimensional domains. To be given a
numerical representation, these quantise once they have been discretised in some way.

Therefore it is easy and natural to give them a matrix representation. The only very
significant exception to this rule is the physical description of antennas, geometry and
material properties, which requires specialised representations. However, the single matrix
holding the samples of the quantity does not provide a complete description. To fully
describe a continuous physical quantity, no matter how it is discretised, it is necessary to fully
specify the “rules” used to obtain the discrete version. There are several possible ways:
sampling, piecewise or entire domain approximation, modal expansion; in all cases additional
information is required to understand the meaning of the values available for the quantity
itself. Mathematically this amount to specify the basis of the function space to which the
quantity belongs used to obtain the series expansions from which the discrete version is
finally obtained by truncation.

 10

An introduction to the Electromagnetic Data Exchange language

For instance if sampling is used there is need to provide the sample coordinates and the
related reference system. Mathematically the initial quantity is a dependent variable, as its
values are a function of the others, while the sampling coordinates are a set of independent
variables defining the support on which the dependent one is defined. All these need to be
packaged in a single whole to convey the complete meaning of data.

Whenever a physical quantity is multi-dimensional there is also need to specify how each
element of the corresponding tensor is to be interpreted. For example, in a 3D vector the first
element could be the x component of a Cartesian projection or the ρ component of a spherical
projection or anything else. Therefore one more quantity is needed. The rule adopted in EDX
is that this quantity is a string vector holding the names of the axes on which the quantity is
projected, e.g. {“x”, “y”, “z”}. The resulting overall logical structure is depicted in figure 4.1.

i

j k

Dependent quantity

Independent quantities

Components index

Figure 4.1 – Logical structure of a multidimensional quantity

Containers are used in EDX to keep all these quantities. In many cases, e.g. for spatial
coordinates, some of the independent ones are related to a single physical entity, e.g. 3D
space, therefore other containers may be used on lower levels to collect them reflecting the
logical relations among data items.

Using the approach described so far, all quantities belonging to a data set can be kept jointly
together in a hierarchical structure. Beyond making sure that logical relations are maintained
and put in evidence , thus making data easier to understand, such approach has a another
fundamental advantage: it offers a great deal of flexibility. Imagine that in a dictionary for
electromagnetic fields it is chosen initially to use space sampling in Cartesian coordinates and
that the three quantities X, Y and Z are used directly in the field container (figure 4.2).

E = {e1, e2, e3, …}

Z = {z1, z2, z3, …}

Y = {y1, y2, y3, …}

X = {x1, x2, x3, …}

Field

Figure 4.2 – Field data container with fixed sampling axes

 11

An introduction to the Electromagnetic Data Exchange language

Then to use a spherical reference system it would be necessary to define a new field
container, despite the fact that only the names of the three spatial axes changed. Of course the
difference in meaning is quite substantial, but in the EML files the change is minimal, so a
single function could handle both cases with no problems. There is more, assume now that
having moved to a spherical reference, it is desired to handle the far-field case in which the ρ
component can be dropped. If a Coordinates container has been used then the overall
structure is maintained intact and I/O functions can easily be made that handle both cases
(figure 4.3).

Field

Coordinates

ρ

ϕ

θ

Samples

Field

Coordinates

θ

ϕ

Samples

Figure 4.3 – Field data container with flexible sampling axes (via sub-container)

4.2 The structure of data dictionaries
In general, the definition of a dependent physical quantity can be split in the following three
parts.

• Mathematical support: the description of the domain of definition and its sampling
• Quantity: the description of the structure of the quantity itself, e.g. a 3D vector
• Representation conventions: pinpointing all details about accessory aspects, like the

implied time dependency.
EDX data dictionaries follow the same logical structure (figure 4.4).

Mathematical support

Physical quantities

Representation conventions

Figure 4.4 – Logical structure of a data dictionary

 12

An introduction to the Electromagnetic Data Exchange language

4.2.1 Mathematical support
The mathematical support of a physical quantity can be very simple, e.g. the real line, or
complicated, e.g. a multiply-connected 5-D manifold. The data set specification must
describe the numerical representation used for it, which can range from a regular sampling of
a real interval to a structured volumetric mesh.

The support can in general be decomposed in a number of elements, like frequency or
position. The values assumed by the quantity depend on each of these elements, which can be
seen as the axes of a p-dimensional representation or as the indices of the p-D matrix
associated to it. The dictionary contains the information required to describe each of them
and they are called independent quantities or independent variables. In the electromagnetic
field example there are three independent quantities.

1. Frequency
2. Time
3. Spatial or spectral coordinates (depending on representation) amounting to 2 or 3

independent axes

Usually only the frequency or the time dependency will matter, but in principle antennas with
embedded signal-processing capabilities have a time-dependent spectral-domain field
representation and therefore both dependencies have been included in the dictionary.

Sometimes the mathematical support of the physical quantity is defined indirectly. For
instance when a functional expansion is used, like the spherical wave expansion for fields
that implies an underlying spherical reference system. In this case the dictionary must specify
the support used for the specific representation, e.g. the modal indices of the spherical wave
expansion, since they constitute the actual “sampling” on which the numerical values of the
modal field amplitudes are given.

In other cases it may be necessary to include information about both levels: the physical
support and the mathematical support. This occurs, for instance, for meshed geometries,
where both the mesh itself and the list of mesh elements used as reference to build the basis
functions (e.g. the internal edges) are needed to provide a complete description of the
support; the mesh to specify the actual shape of the support, i.e. the physical object, and the
list of mesh elements, to specify where each currents value is located. Note also for a same
mesh currents values could be associated to patches, edges (the usual RWG basis) or vertices
and this needs to be indicated as well.

4.2.2 Physical quantities
The physical quantities generally have a simpler structure than their support. They are mostly
scalars or vectors or tensors. Therefore in the last two cases it is only required to specify the
projection selected for them. Then of course, it is necessary to specify their numerical nature
(integer, real or complex). In the electromagnetic fields example and just considering the far
field case, in which only two components are relevant, there is a long list, including Cartesian
components, spherical components, Ludwig projections, and several others. The selection
between real and complex representation is clearly linked to the selection of time or spectral
domain. Today complex numbers are always represented in real and imaginary part, but it is
foreseen in the future to offer the option for Euler (polar) notation.

 13

An introduction to the Electromagnetic Data Exchange language

In some cases it is useful to separate the components of a single physical quantity to make the
data set more flexible. In the Filed Data Dictionary the E and H components are considered
two separate quantities, since in most cases only the E field is used for antenna problems.
However the dictionary clearly indicates that whenever they are both defined within a same
data set they must share the same support, to ensure physical consistency.

Often, to save computation time and memory space, not all components of a physical
quantify are specified in practice, exploiting symmetries and other physical properties. A
typical case if the dropping of the vanishing radial field components in the antenna far field,
another good example is the use of only a few elements of the dyadic Green’s function. The
data dictionary should identify the needs in this area, since this is important to identify the
most general way to represent them. The most effective way of representing the quantity
depends on its structure and on the possible existence of multiple representations. Some
example will clarify this rather tricky point.

Example 4.1 - Electromagnetic field. The H component is often left unspecified, so E and H
are handled separately; furthermore the radial component may be vanishing (far field),
therefore both quantities may have two or three components. The latter aspect is taken care
by selecting among the different specifications for the vector projection included in the
dictionary.

Example 4.2 - Spherical Wave Expansion. Out of the full 2N+1 by N space generated by the
Cartesian product of the radial and azimuthal indices only about half of the combinations
make sense, since it must be n>0 and |m|≤n. However to simplify handling and to avoid
inserting in the data dictionary an a-priori choice of the ordering of indices, it was decided to
store the full rectangular matrix, waiting for the foreseen possibility to handle sparse matrices
directly in EML.

Example 4.3 - S-matrix of a reciprocal device. Only the upper or lower triangular matrix is
needed and an explicit listing of the index pairs can be used to obtain a crude but effective
sparse matrix representation; in this way the S-parameter data are indexed by the pairs and
not by the port indices. This case also applies to modal spectra for waveguides and to Green’s
functions.

As already discussed, both physical quantities and mathematical supports have often multiple
representations. For instance, the electromagnetic field can be sampled in a spherical or
Cartesian reference system and others as well and it can be decomposed according to several
projection systems, Cartesian, Spherical, Ludwig 1, 2 and 3, and so on. The data dictionary
should include all these representations, even if initially only a few will be used. This is very
important to ensure that a suitable data set structure is chosen since the beginning.

4.2.3 Representation conventions
Representation conventions include all the accessory information required to fully qualify the
physical quantity. For instance, the implied time dependency convention adopted, the
normalisation impedance chosen for S-parameters or the power normalisation and the phase
reference point for a radiated field. Also information about functional expansions may be
required, like domain of convergence, range of validity (e.g. the minimum sphere of a
Spherical Wave Expansion or the far-field distance for a far field). In general, in defining a
data dictionary it is important to explicitly include all assumptions and conventions used to

 14

An introduction to the Electromagnetic Data Exchange language

arrive at numerical values given for the physical quantity and they should all be part in the
data set, so as to make sure than reading the corresponding EML file there can be no doubts
about the meaning f its content.

In several cases it is possible to define reference conditions, which could be assumed to hold
unless differently specified in the data. Then the data dictionary could report this assumption
and avoid repeating it in each and every data set. For instance, it is customary to assume a
normalisation impedance of 50Ω for S parameters. However, such approach should be used
very sparingly, to void the need to always go back to a “reference book” to fully understand
the data. A data set should contain all information required to fully qualify a physical
quantity, with the exception of those cases in which the chance of ambiguity or doubts is so
small that the user of data will seldom need to go back to the Data Dictionary definition to
understand them.

4.3 A data dictionary example
An example of a data dictionary should help to clarify this rather thorny subject. Again the
electromagnetic field is taken as reference; in particular the field radiated by a source in free-
space, which is a relatively simple entity. It is constituted by a pair of time-varying 3D vector
fields, E and H, defined over the entire space minus the source region and it is assumed to be
sampled within a region of space over a fixed grid of points.

The corresponding data dictionary will include the definition of the following quantities,
called classes to underline the fact that no values are associated with them: Field, Time,
ScanRange, ProjectionComponents. The root class will be a container hosting all of
them into a single data element, the ElectromagneticField, defined as follows.

Class ElectromagneticField
 Component Time
 Component ScanRange:* ! * = all subclasses
 Component ProjectionComponents
 Component Field

The Field class will define the E and H vectors, specifying the measurement units (V/m and
A/m respectively), the data type used to quantify them (real numbers) and the size of each of
their samples. It will also specify the overall dimension, i.e. total number of sampling points
taken in space and time.

Class Field

Dimensions (Time*ScanRange)
Component E

Units V/m
Type real

 Size (ProjectionComponents)
Component H

Status optional
Units A/m
Type real

 Size (ProjectionComponents)

Note that the dimensions are formally specified as the product of three other quantities,
meaning the product of their actual sizes. The product is enclosed in parenthesis to indicate
this indirect relation.

 15

An introduction to the Electromagnetic Data Exchange language

The Time quantity is much simpler, just a real vector with an undefined number of elements.

Class Time
 Units s

Type real
Size 1

The ScanRange quantity that specifies the space sampling is more complicated. First the
sampling can be made in many different reference systems, thus a list of alternative
subclasses is included in the definition. This fact is also indicated by the ScanRange:*
notation in the ElectromagneticField declaration. Each subclass specifies the names of
the 3 axes, their measurement units and data type. Also in this case no dimension is specified,
so each component can be a vector of any length, the actual overall dimension of the
ScanRange, i.e. the one used to compute the actual dimensions of the Field quantity, is the
Cartesian product of these vectors.

Class ScanRange

Subclass Cartesian
 Component x

Units m
Type real

 Component y
Units m
Type real

 Component z
Units m
Type real

Subclass Cylindrical

…

Subclass Spherical
…

…

The ProjectionComponents class has a somewhat different nature. In principle, it would
have been possible to state that the E and H vectors have length 3 and avoid any further
complication. However the use of an extra class offers quite a number of possibilities. First it
allows to specify in a convenient way the reference system chosen for the projection of the
field vectors. Second it does so, using strings, which convey the exact names used in antenna
engineering books, which can be used for data display and plotting. Third by defining
subclasses with different sizes it would be very easy to take of the situations in which only
two components are needed or known (e.g. on an equivalent surface or in the far field).

Class ProjectionComponents

Type string
Size 3

 Range {[“x”,“y”,“z”];
 [“\theta”,“\phi”,“r”];
 [“a”,“b”,“r”];
 [“Az”,“El”,“r”];}

TEX notation, e.g. \theta to indicate the Greek letter θ, has been chosen for the data
dictionaries developed so far for name strings since it offers readability while supporting
pretty printing of projection axes names, e.g. as labels in plots, with many existing tools.

 16

An introduction to the Electromagnetic Data Exchange language

It is also interesting to see how the simple field dictionary illustrated above can be easily
extended to cover the very common case in which fields are given in frequency-domain
(Fourier transforms) rather than in time-domain and the time dependence is replaced by
frequency dependence. Often spectral field representations are also used instead of space
domain ones. The following examples list all changed and new quantities required to extend
the dictionary to frequency domain fields. Note in particular the addition of the
TimeDependency class to specify the implied time dependency convention and the fact that
it is considered an attribute and not a component (see section 4.4 for an explanation).

Changes

Class ElectromagneticField
 Attribute TimeDependency
 Component RepresentationDomain
 Component Time

Component Frequency
 Component ScanRange:*
 Component ProjectionComponents
 Component Field

Class Field

Dimensions (Frequency*Time*ScanRange)
Component E

Units V/m
Type (RepresentationDomain.TimeType=”time” ? real :

 complex)
 Size (ProjectionComponents)
Component H

Units A/m
Type (RepresentationDomain.TimeType=”time” ? real :

 complex)
 Size (ProjectionComponents)

New quantities

Class TimeDependency

Type string
Size 1
Range “+j \omega t”

Class RepresentationDomain

Component TimeType
Type string
Size 1
Range {“time”; “frequency”}

Component SpaceType
Type string
Size 1
Range {“space”; “spectrum”}

Class Frequency

Unit Hz
Type real
Size 1

The ElectromagneticField class is extended to hold the extra classes and, obviously, a
new Frequency class is added. The Field class needs also some modification to

 17

An introduction to the Electromagnetic Data Exchange language

accommodate for the fact that now the field vectors can be either real (time domain) or
complex (frequency domain). The syntax used is similar to that of the C/C++ condensed if,
the part before the question mark is a condition, the first token after the question mark applies
if the condition is true and the one after the colon otherwise. Finally the
RepresentationDomain class is introduced to specify all possible combination of Fourier
transformations for time and space.

Clearly if the need arises at a later time, it would also be possible to specify independent
transforms for each space axis just adding a subclass to the RepresentationDomain class.

4.4 Alternative representations of simple quantities

The EML (see section 5), following the XML approach, offers two different ways of
expressing values associated to a quantity: as components and attributes. The basic difference
between the two is that the second can only hold single immediate values. The more subtle
difference, much more important from a data dictionary perspective, is that attributes do not
offer room for extensions of the dictionary. As shown in the example in section 4.3
components may actually refer to another class, which in turns hold several components, thus
leading to the possibility of very sophisticated organisations of the data. By carefully
designing this data structure it is possible to obtain a very flexible dictionary open to future
modifications that do not invalidate the original structure. On the contrary, since attributes
just old single immediate values, their definition can not be modified or changed into a
component without making the resulting EML files incompatible with the older version.

The choice whether some quantity should be represented by a component or an attribute is
quite common. The rule to be applied is that only simple quantities that can be expected not
to need changes in the evolution of the dictionary should be handed via attributes. To be more
precise, the only thing that can be changed in an attribute is the list of admissible values. For
instance in the field dictionary discussed in section 4.3 the TimeDependency attribute can be
modified to extend its range from “+j\omegat” to {“+j\omegat”, “-j\omegat”}. On the other
end, the RepresentationDomain could have been split in two attributes, one for the time-
frequency alternative and the other for the space-spectral one, but being conceivable that it is
extended to cover the case of mixed spatial-spectral representation a component is the proper
choice.

4.5 More complex data structures

There are chunks of data having a much more complicated logical structure than those
discussed so far. The most prominent example is the geometrical representation of objects.
Another one is the description of an antenna, even when limiting to its main elements, i.e. not
listing all screws and washers. In general complex representations require the use of data
trees or networks, in order to capture all links existing among their different components. A
data dictionary for such entities must capture these relations, which are usually very
important. For instance, it is relevant to know the position of the feed with respect to the
reflector of an antenna. The EML provides special facilities to capture this complexity.
However they are not discussed in this introductory presentation to avoid overloading it. The
interested reader is addressed to the EDI manuals, until the matter will be covered by further
EDX manuals.

 18

An introduction to the Electromagnetic Data Exchange language

5. The Electromagnetic Mark-up Language

Initially it was believed that the data needed in EM data sets could be represented with
extremely few basic blocks – simple named matrix building block (vectors and scalars being
special cases of the matrix) where the elements of the matrix could be of the standard types
such as integers, reals, complexes, logicals and characters plus a few extra features such as
attributes. This would be little more structured version of the very common traditional data
file organisation with a sequence of blocks each initiated by a tag on a separate line followed
by some lines with numbers or characters. The analysis mentioned in section 3.2 and the
work in the ACE and EAML groups revealed that a much more structured approach was
needed, and here the XML was right at hand. The EML is thus very structured but in contrast
to what might be expected it is not very big language.

5.1 (Absolute) XML basics
The absolute basic building blocks of the eXtendable Mark-up Language are tags, elements
and attributes as shown in figure 4.1 where one of the EML elements are used as example:

<?xml version="1.0" encoding="UTF-
<EDIFile ………… >
…………

<Declarations>
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>
<Component Type="double">

<Value> 0 90</Value>
</Component>

</Variable>
…………

</Folder>

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

<?xml version="1.0" encoding="UTF-8”?>
<EDIFile ………… >
…………

<Declarations>
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>
<Component Type="double">

<Value> 0 90</Value>
</Component>

</Variable>
…………

</Folder>
</Declarations>

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

<?xml version="1.0" encoding="UTF-
<EDIFile ………… >
…………

<Declarations>
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>
<Component Type="double">

<Value> 0 90</Value>
</Component>

</Variable>
…………

</Folder>

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

<?xml version="1.0" encoding="UTF-8”?>
<EDIFile ………… >
…………

<Declarations>
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>
<Component Type="double">

<Value> 0 90</Value>
</Component>

</Variable>
…………

</Folder>
</Declarations>

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

Figure 5.1 - Basic XML concepts

 19

An introduction to the Electromagnetic Data Exchange language

The key building block in XML is the elements. An element is some text (denoted the
element body) bounded by a set of tags denoted the opening tag and the closing tag. The tags
are strings initiated by ‘<’ and ended by ‘>’. The opening tag contains the element type ID
(e.g. ‘Variable’ in fig. 4.1) followed by optional attributes. An element attribute has a name
(a string) and a value (a string in double quotes). Hence the opening tag

<Variable Name="SC_Phi" Class="Phi" ID="3">

opens a element of type Variable which has 3 attributes - Name, Class and ID.
The closing tag of an element only contains the division character ‘/’ followed by the type ID
i.e. </Variable> in the example above.

Very often it is adequate to use a so called empty element. Empty element are singleton tags
(also called empty tags); they have no text between a pair of tags and the singleton is ended
by the string ‘/>’. The information in an empty element is held in an attribute:

<Domain Reference="SpherCut_Phi"/>

A key and very important feature of XML is that elements can be nested to any level i.e. one
element can contain other elements. In figure 4.1 the element type Declaration contains the
element type Folder which again contains Variable etc. The nesting thus enable designer to
build a rather complex language by defining simple types that can then be put into more
complex types.

Until now this mini outline of XML of has only been about form. Basically any gibberish that
satisfies the above syntax can be considered as XML but it will of course be of no use. Hence
the next step is to add meaning and this is really where the designer starts to eXtend. The idea
is to define a set of types which is needed to hold the data of the desired data set. A type is
made in a type definition. The type has a name (e.g. Declaration), some attributes if needed
and a body which can contain simple data or it may in itself contain elements of other
homemade types. In the next section this is done for the EML which is thus an example of the
eXtension process. A data set will then be a collection of instances of the defined types.

This very, very limited discussion of XML is only intended as an outline for the reader to
understand the following sections. There is of course much, much more to be said about
XML. The interested reader is referred to one of the many web-sites (a search for
“Introduction to XML” on the web yields more that 100000 hits).

5.2 The EML types

The EML includes four main sections of a data sets (e.g. in a file). These four sections are

• the header
• the declarations
• the raw data
• the application data section.

The rest of this chapter describes in detail each one of them. The declarations section, which
conveys the meaning and defines the structure of data is the core of an EML and therefore
has received most of the attention in the discussion.

 20

An introduction to the Electromagnetic Data Exchange language

5.2.1 The header

With today standards people is accustomed (or even expects) that any data set is followed by
a practically complete amount of information about its origin and the standard to which it
complies. In EML this information is collected in the <Header>. This element is mandatory
and it looks as follows:

<Header>
 <Stamps>
 <Version>EDI Version 1.00.00</Version>
 <Format>XML</Format>
 <DateTime>2008-01-20T13:27:53Z</DateTime>
 </Stamps>
 <Origin>
 <Tool>
 <Name>GRASP9</Name>
 <Version>9.4.01</Version>
 </Tool>
 <Project></Project>
 <User>
 <Name>Poul Erik Frandsen</Name>
 <Affiliation>TICRA</Affiliation>
 </User>
 </Origin>
 <UserText>Field data in cuts</UserText>
</Header>

The <Header> can contain three elements: <Stamps>, <Origin> and <UserText>.

5.2.1.1 <Stamps>
The <Stamps> element contains three elements that will be added automatically by the EDI.

The <Version> tells which version of the EDI that has created the file. It is here assumed, that
the file has been created with functions in the EDI library. Some developers may find it
attractive to manipulate an EDI file with homemade functions (routines) that perform all
input and output using READ and WRITE (Fortran90) or getf and putf (C/C++) statements.
This is definitely not recommended! Rather, all access should be made with the EDI library.

Next, the <Format> tells that this is an XML file. When the EDI is extended with features for
other formats (e.g. HDF5), a single format switch will be available for the developer, and a
very simple extension of a software tool that uses the EDI will enable output in any of the
available formats.
The <DateTime> tells the time when the file was created i.e. when it was closed.

5.2.1.2 <Origin>
In this element information is collected about

• the software tool that created the file
• and in which project
• and by which user

 21

An introduction to the Electromagnetic Data Exchange language

The <Origin> in itself and all contained elements are optional. It is, however, polite if a tool
and its user reveal this information. The high level EDI Library routines for output of
complete fields or currents (known as level 2 routines) will, however, leave these fields
empty.

5.2.1.3 <UserText>
This element is intended for any number of text lines that the output tool or the user might
find adequate. In the case of a parameter study where the same tool is run many times one
may add information about which parameter configuration was used to create the present data
set. The element is optional.

5.2.2 The Declarations and the EML <Variable>

The “real” data i.e. all the various numbers and strings that describe physical and
mathematical entities in an electromagnetic data set such as a set of currents are managed in
the two elements <Declarations> and <Data>. Each data item is described in a <Variable>
element in <Declarations> whereas the corresponding numbers or characters (the raw data)
appear in the <Data> element (see section 5.2.3). This is the rule unless few values are
involved, in which case the data are kept together with the declaration in a local <Value>
element. The reason for this separation is simple. By keeping all data descriptions in a fairly
short element (usually in the top of the file if the data set is stored as such), it is simple for a
user to get a clear overview of the content of the data set e.g. using a standard text editor.
Further, the software that handles the data set can quickly read the short descriptions and
perform practically all consistency checks before massive input of large amounts of numbers
is initiated. The receiving software tool can actually quickly check if the content of the data
set is relevant or if it should be rejected.

The <Declarations> element looks as follows:

<Declarations>
 <Folder Name="folder_name" ID="0">
 <Variable …>
 …
 </Variable>
 …
 <Variable …>
 …
 </Variable>
 </Folder>
</Declarations>

At the present there can only be one <Folder> with the integer ID equal to 0. This element
type is intended for future use and will not be discussed further here. If the data set is saved in
a file, the EDI Library will set the folder name equal to the file name.

As discussed in section 3.2, the EML must be able to represent two fundamental and very
common data structures: n-dimensional matrices, to represent nD-tensor fields, and
hierarchical compounds, to represent the logical and lexical connection among data. The key
element type designed for this purpose is the <Variable>. The type name is inspired by

 22

An introduction to the Electromagnetic Data Exchange language

NetCDF and it designates that the content may be changed if e.g. a data set is input, modified
and later output from a program.

5.2.2.1 <Variable> with data
The <Variable> appears in two forms: 1)

1) with its own values: The variable will be made to hold data of some shape and type
e.g. a vector of string-values or a matrix of integers.

2) with references to other variables. The variable will not have any real data (with the
exception of simple EML Attributes – see below). Rather, it will contain references
that points at other EML variables in the same file.

In the first case, an instance looks as follows:

<Variable Name="variable_name" Class="class_name" ID="int>0">
 <Attribute Name="attrb._name1">attrb._value1</Attribute>
 ……
 <Attribute Name="attrb._name_j">attrb._value_j</Attribute>
 <Sizes> list of n positive integers (n > -1) </Sizes>
 <Domain Reference="first name of another variable"/>
 ……
 <Domain Reference="n’th name of another variable"/>
 <Component Type="a valid EDI type">
 <Value> some values of the above type </Value>
 </Component>
</Variable>

The italic are where the actual data appear. The <Variable> type has three XML attributes:
Name, Class and ID. The name must be unique within one folder and the usual rules for
names apply: first character must be a letter, then a sequence of letters, digits or underscore
(no special characters and no blanks). These naming rules apply to all names in EML.
The class name is optional, but it is strongly recommended that classes are used for all
variables in a data set. Not doing so will basically prevent the use of many existing and future
features of tools based on EDX. Hence all instances of variables should belong to some class
from the joint pool of classes derived from the Data Dictionaries. If no class is available, the
developer should prepare a new class together with the other developers that shall use the
data set. The class description specifies exactly what to find in the variable i.e. between the
element tags (see sections 3.1 and 4).
Finally, the ID is an internal integer identifier managed by EDI – don’t mess with these in an
editor.

The first content of the <Variable> type is a sequence of EML attributes (don’t confuse these
with the XML attributes that appear in the opening tag). The EML attribute is a type that has
been designed by the ACE-EAML group to hold simple descriptive data which in general do
not change. The attribute has a name. As an example, the time dependency of a field is stored
in an EML attribute:

<Attribute Name="TimeDependency">+j \omega t</Attribute>

 23

An introduction to the Electromagnetic Data Exchange language

Next you will see the <Sizes> element. This element is empty or it contains a sequence of
integers. If it is empty, the <Variable> either holds a simple scalar of one of the EDI types or
the variable is a container i.e. it has no data in itself but references to other variables (see
5.2.2.3 4.2.2.2). A scalar <Variable> will look as follows:

<Variable Name="My_Control1" Class="Switch:String" ID="3">
 <Sizes></Sizes>
 <Component Type="string">
 <Value>On</Value>
 </Component>
</Variable>

If the <Sizes> is non-empty, the integers tells the size of an n-dimensional array also denoted
a Rank n array where each element is a <Component> of one of the available EDI-types.
Structures as components are under consideration. If the <Variable> has only one
<Component> there is no need for naming it. If, however, more components are needed, each
component has a name:

 <Component Name="Double_Components" Type="double">
 <Value> 1 2 3</Value>
 </Component>

In the following example a 1D variable of class Frequency has a component of EDI type
double i.e. a double vector of length 3 due to the <Sizes>. (Since no units are specified, the
default unit Hz is assumed. See more about defining and using a class in section 4).

<Variable Name="My_Frequency" Class="Frequency" ID="1">
 <Sizes> 3</Sizes>
 <Component Type="double">
 <Value> 300000000 310000000 320000000</Value>
 </Component>
</Variable>

The rank can be any positive integer. In the Fields DD a rank 7 array may occur i.e. there will
be 7 integers in <Sizes>. A <Variable> can have any (positive) number of <Components> of
different EDI types, but they are all bound to the same <Sizes> as in the following example,
where there are 3 integers in the first component and 3 strings in the second:

<Variable Name="My_Mixed_Var" Class="Mixed_Class" ID="1">
 <Sizes>3</Sizes>
 <Component Name="Double_Components" Type="double">
 <Value> 1 2 3</Value>
 </Component>
 <Component Name="String_Component" Type="string">
 <Value> "String1" "String2" "String3"</Value>
 </Component>
</Variable>

In the above example three values appear in a <Value> element inside the <Variable>. This
option can be used in EML if the number of values is small. If the number of values is larger,
the values will appear in the <Data> element to avoid long <Variable> elements in the
<Declarations>. If the file has been created with the EDI, the library will determine when the
values shall appear in the <Variable> and when in <Data>.

 24

An introduction to the Electromagnetic Data Exchange language

5.2.2.2 Domains and dependencies
The last element type that appears in a <Variable> with own data is the <Domain
Reference=”…”> element which contains a reference to another EML variable in the file..
This element - an empty XML element (see section 5.1) - is used to tell that the referenced
variable is part of the domain of the <Variable> it self.

EML <Variables> that have <Domain>’s are called dependent. Otherwise they are called
independent – such as the Frequency variable shown above. The Reference attribute points at
another EML variable that must be in the data set (e.g. in the file). In the following example
there are four <Domain Reference=’…’/> specified telling that the values of the pattern was
calculated at points obtained as the Cartesian product of the four variables:

<Variable Name="My_Ptn" Class="Field:RadiationPattern" ID="6">
 <Sizes> 2 2 161 1</Sizes>
 <Domain Reference="My_Ptn_ProjectionComponents:Ludwig3"/>
 <Domain Reference="My_Ptn_Phi"/>
 <Domain Reference="My_Ptn_Theta"/>
 <Domain Reference="My_Ptn_Frequency"/>
 <Component Type="dcomplex"/>
</Variable>

Clearly, the <Sizes> specification of the dependent <Variable> must correspond to the
<Sizes> of the <Variable> on which it depends. Unfortunately, the EDI Library will not and
can’t perform this check! It is thus up to the developer to ensure that the <Sizes> are
consistent when a tool outputs a data set. (It is quite easy to implement the check for a
<Variable> which has been input using EDI function calls, but then what shall be done if the
<Sizes> doesn’t fit?).

The <Domain> can thus be used, and should be used, to tell a receiving software tool the
dependencies among the various elements in the data set. Finally, in the <Sizes> in the above
example one can see that "My_Ptn" is a 4D double complex array with 1×161×2 ×2 elements
and obviously corresponding to 1 frequency, 161 θ-values, 2 φ-values and with two field
components. Note, that the EDI Library stores the domains in reverse order of the one known
within the software tools (the order in which the domain variable names are given to an EDI
function). So basically the double complex field pattern values have been created in a loop
structure as follows:

 Loop over Frequencies (here 1)
 Loop over Theta values (here 161)
 Loop over Phi values (here 2)
 Calculate component 1 and component 2
 pooL
 pooL
 pooL

In practice the developer/user should avoid to mess around the actual values in a file and they
are often not saved in nice columns, but in practice it is often needed to fetch the data with a
tool that doesn’t “speak EDX” and in that case the above information is vital.

 25

An introduction to the Electromagnetic Data Exchange language

5.2.2.3 <Variable> with references
In 5.2.2.1 the <Variable> with own data was introduced. For several reasons, however,
another option has been added to the EML <Variable>. Here the <Variable> doesn’t posses
its own data. Rather, it has references to one or several other EML <Variable>’s. A typical
example:

<Variable Name="My_Ptn_Field:Far" Class="Field:Far" ID="7">
 <Attribute Name="SpaceTypeAxis">Space</Attribute>
 <Attribute Name="TimeDependency">+j \omega t</Attribute>
 <Attribute Name="TimeTypeAxis">Frequency</Attribute>
 <Sizes></Sizes>
 <Component Reference="My_Ptn_Frequency"/>
 <Component Reference="My_Ptn_ScanRange:ThetaPhi"/>
 <Component Reference="My_Ptn_ProjectionComponents:Ludwig3"/>
 <Component Reference="My_Ptn_Field:RadiationPattern"/>
</Variable>

In the above example the applications of <Component Reference=”…”> is shown where the
<Variable> element now appears as a compound, which tells the connection among data. The
compound is also denoted a container. Note that the <Sizes> element is empty – it must
however be there. Since compounds can reference other compounds (obviously a ring of
references is not allowed), this type of <Variable> enables a joint handling of very complex
data sets – all <Variables> in the data set can be connected either with a <Component
Reference=”…”> or with a <Domain Reference=”…”> in a multi-dimensional treelike
structure and thus show the logical connection among data. If a compound is not referenced
by any other <Variable> it is a top-level compound, i.e. it acts as the entry to a large data set.

The compound also enables the handling of several data sets in the same EDI file, and some
data sets may even share some features. Two fields may e.g. reference the same Frequency
variable. The use of compound is not mandatory. A group of developers can decide to
represent their data set with a set of unconnected <Variable>s. The handling of the references
is, however, quite easy when the idea has been caught and the EDI Library has a nice
collection of functions for managing references.

5.2.2.4 Units
As these notes are being prepared, the EML is under further development. The observant
reader may have noticed that the issue of units has not been discussed at all. Initially the idea
was that default units should be agreed upon for all elements in a data dictionary and units
should thus be implicit. As an example it was agreed that the unit for Frequency should be Hz
(thus usually leading to very large numbers in <Variable>s of this class).
The first experiences quickly revealed that this was much too stringent. For this reason a new
Unit attribute has been added to the <Component> element which now may look as follows:

 <Component Name="…" Unit="…" Type="(some EDI type)">

The Unit is optional. If it doesn’t appear, the data item is given in default units as agreed
upon in the Data Dictionary. However, it strongly recommended to specify units since their
availability makes data much safer to use, e.g. allowing display of units in processing and
visualisation tools.

 26

An introduction to the Electromagnetic Data Exchange language

5.2.3 The <Data> element

If the number of data values in an EML <Variable> is larger than a few, the values will not
appear together with the declaration in a <Value> element. Rather, the data will appear in a
corresponding <Variable> in the <Data> element with exactly the same name. The relation
between the <Variable> in <Data> and the corresponding <Variable> element in the
<Declarations> is simple: They have the same name, the components have the same names
and EDI types and the attribute RefID has the same value as the ID attribute in the
declaration.

<Variable Name="(declared variable name)" RefID="(integer>0)">
 <Component Name="(component name)" Type="(EDI type)">
 <Value>
 …… at lot of data e.g. hundreds of numbers ……
 ……
 </Value>
 <Component>
 ……
 <Component Name="(component name)" Type="(EDI type)">
 <Value>
 …… at lot of data e.g. hundreds of numbers ……
 ……
 </Value>
 <Component>
</Variable>

In a file the raw data are stored in a way which is adequate for the EDI Library functions
(usually 2 numbers pr. line). There is, however, no rule in the EML for this format. The
sequence of the data values are, however, related to the declared <Domain Reference=”…”>
elements of the <Variable> variable in question.

5.2.4 The <Application_data> element
The last type of element in the EML is the <ApplicationData>. The syntax is extremely
simple:

<ApplicationData>
 … any data what so ever …
</ApplicationData>

This section is intended for a programs private data i.e. data that are not part of the data set
in question. As an example the field data dictionary doesn’t include any specification of
bearing but some software tools actually used this information. Hence the developers of a
specific tool can add all data which are not intended for other tools in this element i.e. a tools
private data. The form of data items inside the element is not prescribed, but it is of course
recommended to use an XML extension or even use an EML-like form if possible. This will
make it easier to maintain the content in the future and a user can easily understand the data if
the file is inspected with an editor. Hence in stead of using

<ApplicationData>
 0.04
</ApplicationData>

 27

An introduction to the Electromagnetic Data Exchange language

one should use something like

<ApplicationData>
 <Feed_position Unit=”mm”> 0.04 </Feed_position>
</ApplicationData>

or maybe even

<ApplicationData>
 <Variable Name="Feed_position">
 <Component Unit="mm" Type="double">
 <Value> 0.04 </Value>
 </Component>
</ApplicationData>
The latter alternative does use much, much more space in a file - but then it is infinitely more
informative.

5.2.5 Organising a data set with EML

The few and quite simple EML features discussed in section 5 can be used to organise rather
complex data sets in an EDI file. In a data set, data are related. As an example, a far field will
consist of many variables each of which describes various features of the field such as
sampling, frequencies, polarisation, the actual E and H field values etc. In the file all these
variables reside as Lego blocks. How can they be kept together such that the whole field
appears as a unity to a tool that reads the file? The observant reader will know the answer:
using component and domain references.

The design and organisation of the elements of the data set is determined by the data
dictionary. When it has been determined which data are kept as attributes and variables, the
easy solution is to make containers which link the data together. There will always be one
main (root) container variable that will be the entry to the data set giving component
references to many other variables. The class of this container will be the agreed upon class
of the data set e.g. Field:Far. The container will have some mandatory component references
and some optional – the later will only be used by some tools. This will all be laid down in
the data dictionary. Other containers may then be needed on a second level to organise other
groups of variables. The principle is shown in figure 5.2.

MyDS_Root MyDS_VAR1

MyDS_VAR3

……………….

MyDS_VAR_N

MyDS_VAR2

MyDS_VAR12

MyDS_VAR13

MyDS_VAR14

MyDS_VAR11

MyDS_Root MyDS_VAR1

MyDS_VAR3

……………….

MyDS_VAR_N

MyDS_VAR2

MyDS_VAR12

MyDS_VAR13

MyDS_VAR14

MyDS_VAR11

 28

An introduction to the Electromagnetic Data Exchange language

Figure 5.2 - Organisation of a data set using containers (MyDS_Root and MyDS_VAR2)

Besides the component references there will typically also be a need for domain references
which at the same time link variables together and tells which variables depends on which.
Finally, we note that different data sets may share various features e.g. a set of currents and a
near field may reference the same frequency variable.

5.2.6 Advanced data structuring

As already mentioned in Section 4.5, EML offers the elements to build data sets that are
much more complex than those discussed so far. In particular, it offers the possibility to
assign dimensions to components, i.e. to state that each element of a component is constituted
by an n-dimensional matrix of elements. This feature makes it easy to store vector and tensor
quantities. Furthermore components can be nested, i.e. a component can be a container for
other components of lower level. In this way it easy to build tree-like data structures, similar
to the derived types available in many programming languages (e.g. struct in C/C++,
TYPE in FORTRAN90, record in Pascal). Links among these elements can be created in
various ways so as to capture the full complexity of tree- and network-like data structures.

These advanced topics are not discussed in this introductory presentation to avoid
overloading it. The interested reader is addressed to the EDI manuals, until the matter will be
covered by further EDX manuals.

5.2.7 EML syntax in Extended Backus-Naur Form

Here we will insert the real EBNF for EML later.

{<Folder Name="…" ID=(integer>=0)1>
 {<Variable Name="…" [Class="…"] ID=(integer>0)>
 {<Attribute Name="…">string</Attribute> }*
 <Sizes>[comma separated list of integers>0]</Sizes>
 (
 { <Component Reference="…"/> }*
 |
 [{<Domain Reference="…"/> }*]
 {<Component Name="…" Type="…">
 [<Value>…</Value>]
 </Component>2}+
)
 </Variable> }*
</Folder> }+

1 ID numbers are unique across the entire Declarations section. The first folder has ID=0 and therefore ID of

variables will start at 1.
2 ID numbers are unique across the entire Declarations section. The first folder has ID=0 and therefore ID of

variables will start at 1.

 29

An introduction to the Electromagnetic Data Exchange language

6. Electromagnetic Data Interface

6.1 Outline of the EDI

A file written using the EML language is quite simple to understand, still it would take a lot
of effort to program the functions to read and write it. Clearly a library including the
functions required for a rapid and easy creations and manipulation of EML data files offers
many advantages to antenna engineers, researchers and EM software developers. Further,
once an interface is agreed, the underlying implementation can be extended, updated and
maintained without changes in the software that utilizes the library. The Library developed
for this purpose is the Electromagnetic Data Interface (EDI) which can be called from
software implemented in C++, Fortran90 and Matlab running on various Windows and Linux
platforms [14,15,16,17].

EDI is composed of three layers offering increasingly higher levels of functionality. The first
level, EDI Toolkit, offers all the basic functionality required to access XML files compliant to
the EML grammar described in section 5. EDI Toolkit functions are the library’s private i.e.
they can’t be used by a developer. This level will thus not be discussed further here. .
EDI Level 0 offers a set of functions to open and close an EDI file. Once opened, there are
functions to read, write and query EML <Variables>, element by element, and to access the
information contained in the Header and Application Data sections. EDI Level 1 includes
functions for data manipulation such as data selection (slicing, sorting, extracting),
permutation of matrix indices and incremental variable manipulation, including update,
insert, overwrite, append and resize.

The library is designed to allow the use of other low-level formats besides EML. In
particular, high-performance standards, like NetCDF and HDF5, are expected to become
available in the future, without having to change the implementation of tools using EDX i.e.
the interface to EDI functions will not be changed.

The services provided by EDI Level 0 and 1 are accessed via an application programming
interface consisting of about 100 functions. Most of them perform the same kind of operation
(read, write, and query) on different types of numerical data (integer, real, complex…),
therefore the number of truly different operations is much smaller. Yet, EDI is not really
immediate to master. Properly written access functions to handle a complete data set require
quite a number of function calls and checks which are relevant to the relations among
different variables and need to be programmed by the user.

To simplify this task, EDI Level 2 offers a very simple way to access complete data sets, e.g.
all data associated with a Field can be read or written with a single call. The price to be paid
for such extreme simplicity is stiffness; data can only be accessed following a predetermined
pattern. Two more alternatives have been devised to offer increased flexibility at the price of
a little more complexity: the EDX Handler and the EDX Translator. They are very different
from each other and from EDI Level 2, but they both rest on the Level 0 and 1 functions.

 30

An introduction to the Electromagnetic Data Exchange language

The present document is written for the EM engineer or scientist whit a reasonable
programming experience and therefore all 3 levels will be discussed here.

Finally, it must be noted, that the present EDI doesn’t include any features for channels IO.
The EDI library manages data contained in disk files and this is what will be assumed for the
rest of this document. Second, there is only room to introduce the most important features.
The reader is referred to the EDI users manuals [14,15,16,17] for a complete discussion of the
library.

The present section shall not repeat the users manuals, which are quite thorough. In stead the
main functions are presented. Details will only be discussed when adequate as a supplement
to the manuals. Since there is only a Fortran API for the EDI Levels 0 and 1 the following
sections will be based on this API.

The EDI Fortran API functions are organised as follows:

• File functions
• Header functions
• Declaration functions
• Data IO functions

o Normal put and get functions
o Direct access functions
o Data IO with Domain reordering
o Advanced Level 1 functions

• Application data access

Clearly a <Variable> must be declared before it can be manipulated. Otherwise, the four
main sections can be accessed in any order that may fit a specific tool because the EDI will
store the information in its own data structures.

6.2 EDI Level 0: Basic functions.

6.2.1 File functions

The three functions for managing the files are for opening, closing and asking if an EDI file
exists. In Fortran77/90 the functions are called

• EDI_FILE_OPEN,
• EDI_FILE_CLOSE and
• EDI_FILE_EXISTS.

In the users manual you will note that the actual file name (or path) is only used as input
when the file is opened or if an existence check is made. As soon a the file is open, all other
function have an opaque integer “EDI file identifier” (file_id) argument which indicates
the EDI file to use.

The open function has a status argument ‘status’ which must be equal to ‘new’, ‘old’ or
‘unknown’. The latter input can be used when an EDI shall be opened without knowing if it

 31

An introduction to the Electromagnetic Data Exchange language

already exists. The EDI_FILE_EXISTS will check both if the file exists and if it is an EDI
file.

6.2.2 The header functions

EDI is equipped with a complete set of functions for manipulating specially all the elements
in the header (see section 5.2.1) i.e. relevant put and query the values of these elements:

• EDI_HEAD_QUERY_STAMP
• EDI_HEAD_PUT_STAMP_FORMAT
• EDI_HEAD_QUERY_ORIG_TOOL
• EDI_HEAD_PUT_ORIG_TOOL
• EDI_HEAD_QUERY_ORIG_INFO
• EDI_HEAD_PUT_ORIG_INFO
• EDI_HEAD_QUERY_TEXT
• EDI_HEAD_PUT_TEXT
• EDI_HEAD_REMOVE_TEXT

The use of these functions is straight forward with one exception: The function
EDI_HEAD_PUT_TEXT has an array of strings as input which are the strings to put in the
<UserText> element in the header. It also has a logical (Boolean) input array argument
named text_type of the same length as the string array which is a little peculiar. It
determines whether each string for the <UserText> element shall be appended in a <Line>
element or “as is”. Hence if string(1) = ‘Mytext1’, string(2) = ‘Mytext2’ and string(3) =
‘Mytext3’ and if text_type(1) =.FALSE., text_type(1) =.TRUE. and text_type(1) =.FALSE.,
then the <UserText> element in the file appears as:

<UserText>Mytext1<Line>Mytext2</Line>Mytext3</UserText>

i.e. ‘Mystext2’ is in a <Line> element.

6.2.3 Managing <Variable>s in <Declarations>.

Besides the <Header>, the rest of the file will contain a set of <Variables> that hold the
actual data (plus optionally an <Application> element). Before any <Variables> can be used
they must exist. If the data set has been input from a file, there will already be a set of
<Variable>s which the program will want to know all about. If, on the other hand, the data is
going to be saved in a file, the necessary <Variable>s must be created and organised. The
EDI has an extensive set of functions for such managing of the <Declaration> element.
Basically there are three main groups of functions. 1) Output: Create <Variable>s with
various features for a data set which is going to be saved in a file or 2) Input: When an EDI
file has been opened these functions can be used to inspect (query) the <Variable>s in the
file. 3) Besides these two important groups, some functions are made for updating a set of
<Variable>s that has either been input or created.

The complete list of functions is listed in tables 6.1, 6.2 and 6.3.

 32

An introduction to the Electromagnetic Data Exchange language

Table 6.1
Functions used at INPUT Purpose
EDI_VAR_QUERY Asks if an EDI variable exists and gets information about it -

not including domains
EDI_VAR_QUERY_DOMAINS Asks if an EDI variable exists and gets information about it -

including domains
EDI_VAR_LIST Gets the list of existing EDI variables in the EDI file
EDI_VAR_CHECK_SIZES Checks if each size of a dependent variable is equal to size

of the respective independent variables
EDI_VAR_EXIST_DOMAIN Checks whether an EDI variable has a domain with given

name
EDI_VAR_QUERY_CLASS Retrieves the class of an EDI variable
EDI_VAR_QUERY_ATTR Retrieves the value of a single attribute
EDI_VAR_QUERY_ATTRS Retrieves the names and values of all attributes
EDI_VAR_QUERY_COMPO-
NENTS

Retrieves the number, names and types of one or more
components defined in an EDI variable

EDI_VAR_QUERY_REFS Retrieves the references of all the components defined in an
EDI variable

Table 6.2
Functions used at OUTPUT Purpose
EDI_VAR_PUT Declares an EDI variable (creating it if needed) – including

rank and sizes but excluding domains.
EDI_VAR_PUT_DOMAINS Declares an EDI variable (creating it if needed) - including

rank, sizes and domains
EDI_VAR_PUT_CLASS Declares the class of an EDI variable
EDI_VAR_PUT_ATTR Declares a single attribute (name and value) in an EDI

variable
EDI_VAR_PUT_ATTRS Declares attributes (names and values) in an EDI variable
EDI_VAR_PUT_COMPO-
NENTS

Declares the number, names and types of one or more
components in an EDI variable

EDI_VAR_PUT_REFS Declares of one or more reference components in an EDI
variable

Table 6.3
Functions used at UPDATE Purpose
EDI_VAR_REMOVE Removes one or more EDI variables from the EDI file
EDI_VAR_RENAME Renames an EDI variable
EDI_VAR_ADD_DOMAIN Inserts one domain and its size in an EDI Variable
EDI_VAR_REMOVE_DOMAIN Removes one domain and its size by an EDI Variable
EDI_VAR_RENAME_DOMAIN Renames a domain defined in an EDI variable
EDI_VAR_REMOVE_ATTRS Removes one or more attributes from an EDI variable
EDI_VAR_RENAME_ATTR Renames an attribute defined in an EDI variable

In the following sections the most important functions will be discussed including
experiences obtained so far. The discussion will not present a complete interface - the reader
is referred to the EDI user manuals for this information.

 33

An introduction to the Electromagnetic Data Exchange language

6.2.4 Output – creating variables and saving data in EDI files

6.2.4.1 Creating an EDI variable with class and domain specification

Variables are needed when a data set shall be output from to an EDI file. A <Variable> can
be created in two ways:

• If the variable is independent it can be declared with the function EDI_VAR_PUT
which simply creates the variable in an EDI file telling its name, rank and <Sizes>.

• If the variable is dependent, the function EDI_VAR_PUT_DOMAINS can be used.
This function has the same arguments plus arguments that specifies the names of the
domain i.e. a list of other variables in the file on which the present variable depends.
Note, there is no check of consistency i.e. if the domain variables actually exists – it is
up to the developer to ensure that all referenced variables exists when the file is
closed. A dependent variable can also be created using first EDI_VAR_PUT and then
later EDI_VAR_PUT_DOMAINS – this may be adequate in some situations. (Note
that a dependent variable may also be created first using EDI_VAR_PUT and the
domain specification may then be added later with EDI_VAR_PUT_DOMAINS.)

The call of function EDI_VAR_PUT_DOMAINS is quite characteristic for the EDI interface
design:
 ier = EDI_VAR_PUT_DOMAINS(file_id, name, rank, sizes,

 dom_n, doms, dom_len)

The integer file_id is always there as the first argument followed by the name of the variable
(a string – in FORTRAN77/90 declared as CHARACTER(LEN=xx) where xx is the required
length). Next rank and sizes information follows and the some data – in this case no. of
domains, their names (an array of strings with names of other variables) and the length of
those names. Rank and sizes are defined in the usual way e.g. a matrix with 4 rows and 15
columns is rank 2 with <Sizes> 4 15 </Sizes>. Note, that domains can be specified without
the existence of the domain variables – it is up to the developer to ensure consistency i.e. to
add these variables before the EDI file is closed. Also note that the number of domains need
not equal the rank (a rather peculiar situation which will rarely appear in practice).

As soon as a variable has been created its class should be declared as discussed in section 5
and according to a Data Dictionary. The class is easily added with

 ier = EDI_VAR_PUT_CLASS(file_id, name, class)

where class is a CAHARACTER variable.

Example 5.1: Assume that we want an EDI Variable for a double complex array with a
logical flag for each element in the array. The variable shall be named XXX3D_GridValues of
the imaginary class FlaggedComplexValuesIn3DGrid which in an imaginary Data Dictionary
depends on the 1D arrays (vectors) X,Y and Z in that order. Assume the integer file_id has
been assigned a value when the EDI file was opened, that the integer IER has been declared
and that the required sizes reside in the integer NX, NY and NZ:

 34

An introduction to the Electromagnetic Data Exchange language

 INTEGER :: RANK, SIZES(3) ! Obviously rank and sizes
 INTEGER :: DOM_N ! No. of domains
 INTEGER :: DOM_LENS(3) ! Length of domain names
 CHARACTER(LEN=20) VAR_NAME
 CHARACTER(LEN=30) CLASS_NAME
 CHARACTER(LEN=20) DOMAINS(1:3)
 ………
 ! Create EDI variable and set its class
 DOMAINS(1) = ’X’; DOMAINS(2) = ’Y’; DOMAINS(3) = ’Z’
 RANK = 3; DOM_N = 3; DOM_LENS = LEN_TRIM(DOMAINS)
 SIZES(1) = NX ; SIZES(2) = NY ; SIZES(3) = NZ
 VAR_NAME = ‘Our3D_GridValues’
 IER = EDI_VAR_PUT_DOMAINS(FILE_ID, TRIM(VAR_NAME), RANK, &
 SIZES,DOM_N, DOMS, DOM_LEN)
 IF (IER/=0) GOTO 999 ! Some error reaction at 999
 CLASS_NAME = ‘FlaggedComplexValuesIn3DGrid’
 IER = EDI_VAR_PUT_CLASS(FILE_ID, TRIM(VAR_NAME), &
 TRIM(CLASS_NAME))
 IF (IER/=0) GOTO 999 ! Some error reaction at 999
 ………

Example 5.1 is continued below.

Important remark for FORTRAN90 developers
When a variable name is input to an EDI functions – no matter whether it is the ‘name’ or if it
is domain names - there are still some problems with some of the FORTRAN90 functions in
how the underlying C++ function gets the data. Not all of these problems has apparently been
resolved and an error may be issued from the EDI function or a runtime error may occur. In a
given situation the problem can be solved in one of the following ways:

1) In very rare cases one may call the function with the variable name as a character
constant e.g. ‘My_FarField’ – it always works.

2) In the majority of cases, however, the argument will be a variable, and in this case
always trim the variable in the call. If the variable is called VAR_NAME then call the
function with TRIM(VAR_NAME) - this usually works.

3) In some cases, however, one may need the length without trailing blanks i.e. set L_V
= LEN_TRIM(VAR_NAME) – then call the function with VAR_NAME(1:L_V).

4) In very rare cases none of these option works correctly, and in such cases one can try
to copy the trimmed variable name into another character variables and add the null
character as last significant character and then call the function with the other variable
as argument: V_NAM = LEN_TRIM(VAR_NAME)//CHAR(0) (the CHAR(0) is the
string terminator in C/C++ also known as ‘\n’). This tiresome work around usually
succeeds when options 2) or 3) fails. One should, however, try 2) first because the
code get rather long if 4) is used every time an EDI function is called.

As and example of a combination of 3) and 4) consider the following block of FORTRAN90
statements (we get back to the function EDI_VAR_SET_DOUBLES later – the important
issue here is the VAR_NAME argument):

 35

An introduction to the Electromagnetic Data Exchange language

 IER = EDI_VAR_SET_DOUBLES(FILE_ID, TRIM(VAR_NAME), I, RANK, &
 V_START, V_COUNT, DOUBLES)
 IF (IER<0) THEN
 L1 = LEN_TRIM(VAR_NAME)+1
 V_NAM = TRIM(VAR_NAME)//CHAR(0)
 IER = EDI_VAR_SET_DOUBLES(FILE_ID, V_NAM(1:L1), I, RANK, &
 V_START, V_COUNT, DOUBLES)
 ENDIF

Here first an attempt with trim is made and if it fails, the function is called again with the
actual argument V_VAM which equals VAR_NAME without trailing blanks concatenated
with a CHAR(0) as the last character.

6.2.4.2 Adding features to a <Variable> for data

When a variable for has been created a number of functions can be used to shape it for the
specific use. As explained in section 5 there are two main types of <Variable>s: 1) The
“normal” type for actual data values and 2) the container that binds a data set together using
references.

Besides rank, sizes and domains which are discussed above, the features for the normal
<Variable> are the attributes and the components.

The most important declaration is the components. A <Variable> may have any number of
components of one of the available EDI types as shown in table 6.4. The components are
declared with function EDI_VAR_PUT_COMPONENTS. All components have the same
shape i.e. their rank and sizes are those of the variable (the introduction of structures will
remove third limitation. Such developer-defined data types are not available and are not
planned to be implemented as static data-typing – the only needed for data exchange – can
achieve the same goal by simply nesting component definitions. Each component can be
named. This feature is used if a variable has more components.

 Table 6.4
Fortran Type EDI symbol Description
 EDI_TYPE_VOID 0 bit
INTEGER EDI_TYPE_INT 32 bit integer (sign is handled by the

application, not by EDI)
CHARACTER*1 EDI_TYPE_CHAR 8 bit character
LOGICAL EDI_TYPE_BOOL 1 bit logical (8 bit of memory)
CHARACTER*(*) EDI_TYPE_STRING arbitrary-length sequence of 8 bit

characters
REAL EDI_TYPE_REAL 32 bit IEEE floating-point real
REAL*8 EDI_TYPE_DOUBLE 64 bit IEEE floating-point real
COMPLEX EDI_TYPE_COMPLEX 64 bit complex (pair of REALs)
COMPLEX*16 EDI_TYPE_DCOMPLEX 128 bit complex (pair of DOUBLEs)

The function used to specify the components is:

 ier = EDI_VAR_PUT_COMPONENTS(file_id, name, count, &
 comp_names, comp_len, edi_types)

 36

An introduction to the Electromagnetic Data Exchange language

Where count is the number of components, comp_names is a CHARACTER array with count
elements holding the names of the components and comp_len an array with the length of the
names. Finally, edi_types is an integer array (with count elements) that specifies their type.

All attribute values are treated as character strings. Hence a numeric value must be converted
from characters to numbers by the tool. The attributes are easy to add using the functions
EDI_VAR_PUT_ATTR (one) and EDI_VAR_PUT_ATTRS (several at the same time):

 ier = EDI_VAR_PUT_ATTRS(file_id, name, count, attr_names,
 attr_nlens, attr_vals, attr_vlens)

Count tells the number of attributes in the character array attr_names and then length of these
names must recide in attr_nlens. Similarly, the corresponding values must be in attr_vals and
the length of these must be in attr_vlens.

Example 5.1 continued: In the example two components are need – one for the complex
values which we call ‘OurCmplxCmp’ and one for the logicals called ‘Flag’. Further, the
attributes OurAttib1 and OurAttrib2 must be added with the values ‘Rotated’ and ‘Blue’:

 INTEGER :: COUNT
 INTEGER :: COMP_LENS(1:2) ! Length of attribute names
 INTEGER :: COMPTYPES(1:2) ! For component type specs.
 INTEGER :: ATTR_LENS(1:2) ! Length of attribute names
 INTEGER :: ATTV_LENS(1:2) ! Length of attribute values
 CHARACTER(LEN=10) COMPONENTS(1:2)
 CHARACTER(LEN=20) ATTIRIBUTES(1:2)
 CHARACTER(LEN=20) ATTRIB_VALS(1:2)
 ………

 ! Specify components
 COUNT = 2;
 COMPONENTS(1) = ‘OurCmplxCmp’; COMPONENTS(2) = ’Flag’
 COMP_LENS = LEN_TRIM(COMPONENTS)
 COMPTYPES(1) = EDI_TYPE_DCOMPLEX
 COMPTYPES(2) = EDI_TYPE_BOOL
 IER = EDI_VAR_PUT_COMPONENTS(FILE_ID, TRIM(VAR_NAME), COUNT, &
 COMPONENTS, COMP_LENS, COMPTYPES)
 IF (IER/=0) GOTO 999 ! Some error reaction at 999

 ! Specify attributes
 ATTIRIBUTES(1) = ‘OurAttrib1’; ATTIRIBUTES(2) = ’OurAttrib2’
 ATTRIB_VALS(1) = ‘Rotated’; ATTRIB_VALS(2) = ‘Blue’
 ATTR_LENS = LEN_TRIM(ATTIRIBUTES)
 ATTV_LENS = LEN_TRIM(ATTRIB_VALS)
 IER = EDI_VAR_PUT_ ATTRS(FILE _ID, TRIM(VAR_NAME), COUNT, &
 ATTIRIBUTES, ATTR_LENS, &
 ATTRIB_VALS, ATTV_LENS)
 IF (IER/=0) GOTO 999 ! Some error reaction at 999
 ………

Example 5.1 is continued below.

 37

An introduction to the Electromagnetic Data Exchange language

Assuming that NX=100, NY=100 and NZ=5, the statements in example 5.1 yield the
following EDI <Variable> declaration in the file:

<Variable Name="Our3D_GridValues"
 Class="FlaggedComplexValuesIn3DGrid" ID="8">
 <Attribute Name="OurAttrib1">Rotated</Attribute>
 <Attribute Name="OurAttrib2">Blue</Attribute>
 <Sizes>5 100 100</Sizes>
 <Domain Reference="Z"/>
 <Domain Reference="Y"/>
 <Domain Reference="X"/>
 <Component Name= "OurCmplxCmp" Type="dcomplex"/>
 <Component Name= "Flag" Type="boolean"/>
</Variable>

6.2.4.3 Making a container

A container variable has zero sizes and no domains. Further, it has component references
pointing at other variables. It is made quite simple using the function

 ier = EDI_VAR_PUT_REFS(file_id, name, count, &
 ref_names, ref_len)

where count is the number of component references, ref_names is a CHARACTER array
with the names of the referenced variables and ref_lens the length of these names.

Example 5.1 continued:
 INTEGER :: RANK, SIZES(3) ! Obviously rank and sizes
 INTEGER :: N_REFS ! No. of ref. components
 INTEGER :: REF_LENS(3) ! Length of domain names
 CHARACTER(LEN=20) VAR_NAME
 CHARACTER(LEN=30) CLASS_NAME
 CHARACTER(LEN=20) REFERENCES(1:3)
 ………
 ! Create a container
 RANK = 0; SIZES = 0 ! SIZES not used but must be present
 VAR_NAME = ‘Our_Container’
 IER = EDI_VAR_PUT(FILE_ID, TRIM(VAR_NAME), RANK, SIZES)
 IF (IER/=0) GOTO 999 ! Some error reaction at 999
 CLASS_NAME = ‘OurContainerClass1’
 IER = EDI_VAR_PUT_CLASS(FILE_ID, TRIM(VAR_NAME), &
 TRIM(CLASS_NAME))
 IF (IER/=0) GOTO 999 ! Some error reaction at 999
 REFERENCES(1) = ’X’; REFERENCES(2) = ’Y’; REFERENCES(3) = ’Z’
 N_REFS = 3; REF_LENS = LEN_TRIM(REFERENCES)
 IER = EDI_VAR_PUT_REFS(FILE_ID, TRIM(VAR_NAME), N_REFS, &
 REFERENCES, REF_LEN)
 IF (IER/=0) GOTO 999 ! Some error reaction at 999
 ………
 ! Set its attributes
 ………

 38

An introduction to the Electromagnetic Data Exchange language

As indicated above, a container can of course also have attributes. Finally, an EDI variable
may have both its own components based on domains and component references. This quite
powerful combination has not been used by the authors but it clearly enables the
representation some rather complex data sets.

6.2.4.4 Making a simple variable

In some cases simple variables are needed e.g. as a logical (Boolean) flag. In EDI simple
variables are created with EDI_VAR_PUT where rank equals zero. Then the class must be
declared with EDI_VAR_PUT_CLASS and a single unnamed component is declared with
EDI_VAR_PUT_COMPONENTS – the type can be any of the already mentioned EDI-types.
The variable value can now be set and saved as discussed in section 6.2.4.5.

6.2.4.5 Transparent IO

Before the functions for saving a <Variable> is introduced, a short discussion about the
transparency of input and output is helpful.

Output: During the calculations in the software tool that utilises the EDI, the tool will of
course use a number of data structures e.g. arrays for saving intermediate and final results.
When data are ready to be saved the relevant EDI PUT function is called with an array with
the results as actual input argument. The EDI function will copy the data to the library’s own
internal data structure and the tools array is free and can be used again or de-allocated.
Basically one can consider the PUT operation as a traditional files write statement i.e. when
performed, the toll can consider the data as saved.
The actual save to file operation is managed by the EDI Library and the developer need not
consider any details. The time and method of output implemented in the EDI may even be
changed in future versions. The only thing to remember is that the EDI_FILE_CLOSE
function must be called before another program can access the file (e.g. a post processor).

Input: The EDI load data from the file into its own data structures at a time which can’t be
controlled by the software tool, and again the time and method is of no importance to the
tool. When the relevant GET function is called, the EDI will ensure that the required data can
be retrieved from the file and become available in the tools own arrays.
Further, since declarations functions (see below) can return all information about a
<Variable> including it’s <Sizes> one may preferably use dynamic allocation by first asking
for <Sizes>, allocate and then GET the data. In this way the arrays will always have the
correct sizes for the data from the file.

6.2.4.6 Saving values in an EDI <Variable>.

When a variable that has been declared as explained above the tool can SET the variable, i.e.
the tool can save data. First, the data will be stored in EDI’s private data structure. The data
will then be saved in the file when EDI_FILE_CLOSE is called. There are two sets of SET
functions – one for scalar variables and one for arrays. The functions are:

 39

An introduction to the Electromagnetic Data Exchange language

Table 6.5
SET scalar EDI variable SET array EDI variable
EDI_VAR_SET_INT EDI_VAR_SET_INTS
EDI_VAR_SET_BOOL EDI_VAR_SET_BOOLS
EDI_VAR_SET_CHAR EDI_VAR_SET_CHARS
EDI_VAR_SET_REAL EDI_VAR_SET_REALS
EDI_VAR_SET_DOUBLE EDI_VAR_SET_DOUBLES
EDI_VAR_SET_COMPLEX EDI_VAR_SET_COMPLEXES
EDI_VAR_SET_DCOMPLEX EDI_VAR_SET_DCOMPLEXES
EDI_VAR_SET_STRING EDI_VAR_SET_STRINGS

They all look alike - except for the variables for EDI_TYPE_STRING (the reader is referred
to [14] for details on EDI_STRINGS). Here we show the interface to the
EDI_VAR_SET_INTS for setting an EDI integer array variable. This function sets or
changes all or a part of the INTEGER values of an EDI variable.

 ier = EDI_VAR_SET_INTS(file_id, name, comp, rank,
 vstart, vcount, vals)
where

ier: Returned value. It is equal to an integer >= 0 if the operation is

successful, otherwise < 0.
file_id (IN): Integer that contains the EDI file identifier.
name (IN): String that contains the variable’s name.
comp (IN): Integer that contains the index of the component to use.
rank (IN): Integer that must contain the variable’s rank.
vstart (IN): Integers array, with length equal to rank, that contains the start indices

(one for each dimension).
vcount (IN): Integers array, with length equal to rank, that contains the number of

values to set or change (for each dimension).
vals (IN): INTEGERS array that contains the values to set.

As discussed above, a variable can have several components. The comp argument points out
which component is set in the present call and its type must of course be consistent with the
SET function which is called i.e. in this case it must be an integer component. Next, note that
the function is designed such that one can set the whole array or a sub-array using vstart
and vcount.

The most “sensible” input is the vals argument. Note, that there is no specific description of
the declared shape and size of vals. Hence vals can be an integer array declared to have
any dimension what so ever and with any sizes. All that is transferred to the SET function is
the start address of the array. All the values to be transferred are then assumed to be in the
following vcount(1) × vcount(2) × ... × vcount(rank) places in the memory.

Assume that rank, vstart, vcount and vals has been declared as follows:

 INTEGER :: RANK, VSTART(1:2), VCOUNT(1:2)
 INTEGER :: VALS(1:7,1:5)

 40

An introduction to the Electromagnetic Data Exchange language

 ……
 RANK = 2
 VSTART(1) = 1; VSTART(2) = 1
 VCOUNT(1) = 7; VCOUNT(2) = 5
 ……
 ! Assignment values to integer array vals

In this case there will be no problem – all sizes fits and the values that has been put into vals
will be saved as intended. If, however, only the first 5 rows are used (e.g. the array is reused
for a smaller integer matrix later) we have a problem, since FORTRAN90 stores data column
wise as shown in figure 6.1 -

Declared 7 by 5 array
- only first 5 rows used

In memory – unused rows appear as
“wholes” with undetermined data

Start of
array

Declared 7 by 5 array
- only first 5 rows used

In memory – unused rows appear as
“wholes” with undetermined data

Start of
array

Figure 6.1: FORTRAN90 actual storage of 2D static array in memory

The same situation appear for static arrays in C/C++ but now with columns since data are
stored row wise in memory. The easiest way to avoid the above problems in to use dynamic
arrays and allocate exactly what is needed before a SET function is called (C/C++ developers
do this but many FORTRAN90 developers tend to use static arrays).

Further details about the various functions in section 6.2.4 can be found in [14].

6.2.5 Input of data from EDI files

6.2.5.1 Obtaining information about EDI variables

When an EDI file has been opened, a software tool needs to know if the content of the file is
as expected (i.e. if a far field is read) the tool needs to know if all the required variables are
present. There may be many other data in the file but this is of no importance here – the tool
will only load the data it needs.

 41

An introduction to the Electromagnetic Data Exchange language

The first thing always is to get a list of the EDI variables in the file – this is obtained with the
important function

 ier = EDI_VAR_LIST(file_id, count, names, name_len, reqlen)

The count argument tells the function the length of the names string array at call. Quite
obviously the function returns the number of variables in the file in count, and the names of
the variables. The names array should be declared dynamically e.g. to 20 names. If this is too
short then ier>0 and count>20 at return and it is easy to re-allocate the array to the correct
size and call the function again.

When the names have been found one can start to examine all the other features of the file.
For this purpose there is a number of EDI functions as listed in table 6.6. First, the tool will
need to locate the data set root containers.

Table 6.6
Functions used at INPUT Purpose
EDI_VAR_QUERY Asks if an EDI variable exists and gets information about it -

not including domains
EDI_VAR_QUERY_DOMAINS Asks if an EDI variable exists and gets information about it -

including domains
EDI_VAR_LIST Gets the list of existing EDI variables in the EDI file
EDI_VAR_CHECK_SIZES Checks if each size of a dependent variable is equal to size

of the respective independent variables
EDI_VAR_EXIST_DOMAIN Checks whether an EDI variable has a domain with given

name
EDI_VAR_QUERY_CLASS Retrieves the class of an EDI variable
EDI_VAR_QUERY_ATTR Retrieves the value of a single attribute
EDI_VAR_QUERY_ATTRS Retrieves the names and values of all attributes
EDI_VAR_QUERY_COMPO-
NENTS

Retrieves the number, names and types of one or more
components defined in an EDI variable

EDI_VAR_QUERY_REFS Retrieves the references of all the components defined in an
EDI variable

First, the tool will need to locate all root containers (see section 5.2.5) of the class of the
variable that represents the data set to be used. Assume all names of variables have been put
in a list and that we are looking for a far field i.e. we must locate all variables of class
Field:Far. Further, assume that we will use the first far field located unless a specific name is
given in which case this field shall be used. This is easy:

 Loop through the variables in the list
 Fetch the class of the present variable
 If class equals ‘Field:Far’ then
 If we are looking for a specific named variable then
 FOUND= Name of present variable equals name searched for
 Else
 FOUND = .TRUE.
 Remember name of variable
 If FOUND exit variables loop

 42

An introduction to the Electromagnetic Data Exchange language

- or in FORTRAN90 – as a general function that may look for variables of a specific class:

FUNCTION LOCATE_VAR_OF_CLASS(EDI_FILE, COUNT, NAMES,
 CLASS, VAR_NAME)

 ! IF VAR_NAME non-blank, look for variable with that name
 ! of class CLASS in EDI_FILE.
 ! IF VAR_NAME is blank at call, return first EDI variable
 ! of class CLASS found in EDI file and its name in VAR_NAME.
 ! The file must be opened. All names of EDI variables in
 ! the file must be in the names array NAMES at call.
 ! Function value is 0 if a variable is found, Otherwise false.

 INTEGER, INTENT(IN) :: EDI_FILE
 INTEGER, INTENT(IN) :: COUNT
 CHARACTER(LEN=MAX_NAME_LENGHT), INTENT(IN) :: NAMES(1: COUNT)
 CHARACTER(LEN=MAX_NAME_LENGHT), INTENT(IN) :: CLASS
 CHARACTER(LEN=MAX_NAME_LENGHT), INTENT(INOUT) :: VAR_NAME
 INTEGER :: LOCATE_VAR_OF_CLASS ! Function value

 ! Locals
 INTEGER :: I, IER, CLASS_LEN
 LOGICAL :: FOUND
 CHARACTER(LEN=MAX_NAME_LENGHT) :: VAR_CLASS

 LOCATE_VAR_OF_CLASS = 0 ! Assume success
 DO I=1, COUNT
 IER = EDI_VAR_QUERY_CLASS(EDI_FILE, TRIM(NAMES(I)), &
 VAR_CLASS, CLASS_LEN)
 IF (IER/=0) GOTO 10 ! Exit if problems (my be refined!)
 IF (VAR_CLASS == CLASS) THEN
 IF (VAR_NAME/=’ ‘) THEN
 FOUND = VAR_NAME == NAMES(I)
 ELSE
 FOUND = .TRUE.
 VAR_NAME = NAMES(I)
 ENDIF
 IF (FOUND) GOTO 999 ! Exit the DO loop
 ENDIF
 ENDDO
 ! We end up here if no variable of CLASS.

 10 CONTINUE
 LOCATE_VAR_OF_CLASS = -1

 999 RETURN
END FUNCTION LOCATE_VAR_OF_CLASS

When the entry container has been located all sorts of checks and cross-checks can easily be
made using the functions listed in table 6.6 and the consistency of the data set can be verified.
Cross-checks include

 43

An introduction to the Electromagnetic Data Exchange language

• Does all directly of indirectly referenced variables exist (this check can be made with
a recursive function starting with the entry container and working down through
references).

• Are the sizes of an EDI variable with domains consistent with the sizes of its domain
variables. The EDI function EDI_VAR_CHECK_SIZES can be used for this check.

• Are all mandatory attributes of an EDI variable present and are their values as
expected.

The general rule should be that the input module which fetches data from the EDI file checks
the validity and consistency of a variables features before the actual data are fetched.

6.2.5.2 Getting the values of an EDI variable

Following checks, the tool reading the EDI file will need to fetch the values (i.e. the content
of the <Data>-section) for each of the required variables. Here the GET functions are used:

Table 6.6
SET scalar EDI variable SET array EDI variable
EDI_VAR_GET_INT EDI_VAR_GET_INTS
EDI_VAR_GET_BOOL EDI_VAR_GET_BOOLS
EDI_VAR_GET_CHAR EDI_VAR_GET_CHARS
EDI_VAR_GET_REAL EDI_VAR_GET_REALS
EDI_VAR_GET_DOUBLE EDI_VAR_GET_DOUBLES
EDI_VAR_GET_COMPLEX EDI_VAR_GET_COMPLEXES
EDI_VAR_GET_DCOMPLEX EDI_VAR_GET_DCOMPLEXES
EDI_VAR_GET_STRING EDI_VAR_GET_STRINGS

Once again they are all alike (with the exception of the string handler) – the only thing that
changes is the type of the VALS array (last argument), which of course changes with the
specific type of the data to be fetched from the EDI-file:

 ier = EDI_VAR_GET_INTS(file_id, name, comp, rank,
 vstart, vcount, vals)
where
ier: Returned value. It is equal to an integer >= 0 if the values are

successfully returned, otherwise < 0.
file_id (IN): Integer that contains the EDI file identifier.
name (IN): String that contains the variable’s name.
comp (IN): Integer that contains the index of the component to use.
rank (IN): Integer that must contain the actual number of variable’s dimensions

(rank).
vstart (IN): Integers array, with length equal to rank, that contains the start indices

(one for each dimension).
vcount (IN): Integers array, with length equal to rank, that contains the number of

values to retrieve (for each dimension).
vals (OUT): INTEGERS array that will contain the retrieved values.

The component must of course be of the correct EDI_TYPE i.e. EDI_TYPE_INT in the
above case.

 44

An introduction to the Electromagnetic Data Exchange language

Once again the developer should take care with the array dimensions. The functions return
vcount(1) × vcount(2) × ... × vcount(rank) values that reside densely in memory.
Assume the function is called with a static integer array where declared as 7 rows and 5
columns. Further, assume that vcount(1) = 5 and vcount(2) = 5 and we want to fetch these 25
values from a rank 2 EDI variable into the array. Then at return the data values reside in the
array as shown in figure 6.2:

Declared 7 by 5 array Returned values will occupy
the first 25 places in the array
corresponding to the first 3
columns and 4 top places of
4th column.

Start of
array

Declared 7 by 5 array Returned values will occupy
the first 25 places in the array
corresponding to the first 3
columns and 4 top places of
4th column.

Start of
array

Figure 6.2: FORTRAN90 location of contiguous array elements in memory

Many problems will be avoided if dynamic allocation is used such that the array exactly fits
with the data to be fetched. In the following example assume that the second component is
going to be fetched from a rank 3 EDI variable with <SIZES> 17 201 10 </SIZES>, and
assume that this is a complex:

 ! Declaration of
 COMPLEX, ALLOCATEBLE :: VALS(:,:,:)
 …………
 VSTART = 1 ! Set all equal to 1
 VCOUNT(1) = 17; VCOUNT(2) = 201; VCOUNT(1) = 10;
 RANK = 3; COMP = 2
 VAR_NAME = ‘My_CmplxField’
 IF (ALLOCATED(VALS)) DEALLOCATE(VALS)
 ALLOCATE(VALS(17,201,10))
 IER = EDI_VAR_GET_ COMPLEXES(FILE_ID, TRIM(VAR_NAME), COMP,
 RANK, VSTART, VCOUNT, VALS)
 …………

Here, the array VALS fits exactly with the data and the application may address the elements
accordingly.

 45

An introduction to the Electromagnetic Data Exchange language

7. Final remarks

In this document we have only covered the most fundamental part of the EML language and
EDI level 0. Much more can be said about the both and a later edition of the present
document will cover some of the key advanced features of EML and key functions of EDI
level 1. Until this extension appears the user is referred to the user manuals.

In EML, more options are possible in the declaration of variables, allowing the nesting of
components, to declare data structured similar to what can be obtained with derived types
(e.g. struct in C/C++, TYPE in FORTRAN90, record in Pascal). However the
corresponding EDI functions have been added recently and not used enough by the authors to
discuss them.

The EDI is a nice interface that has been carefully planned. Further, much of the underlying
implementation has been tested by a number of ACE and EAML partners and those parts of
the library perform satisfactory. There are, however, still parts of the library especially in
level 1 that have only been tested by ITLink. It is hoped that more users will look into and
test these parts in the near future.

Several proposals for future improvements and if implemented they will be covered in future
editions of the present document.

 46

An introduction to the Electromagnetic Data Exchange language

8. References

[1] http://www.antennasvce.org/
[2] Sabbadini M. et al, European Antenna Modelling Library: An Open Platform for

Space Antenna Engineering
[3] http://en.wikipedia.org/wiki/OSI_Model
[4] http://en.wikipedia.org/wiki/XML
[5] Sabbadini M., Data File Format for EM Modelling, 1994, (XEA/098.94, rev.1).
[6] Rew R. and Pincus R., NetCDF User’s Guide for Fortran90Edi manual, An Access

Interface for Self-Describing, Portable Data, Version 3.5, March 2002
(http://www.unidata.ucar.edu/).

[7] Sabbadini M., System Analysis and Requirements for an Electromagnetic Data
Exchange Standard, ESTEC Working Paper No. 2330 Issue 1, ESTEC, Noordwijk,
The Netherlands, October, 2005.

[8] Frandsen P.E., Ghilardi M., Sabbadini M., Benvenuti L., Freni A., Mioc F., Martin T.,
Martinaud J.-P., Rylander T., Yang J,: Requirements for the Electromagnetic Data
Interface (EDI) - XML file format and FORTRAN API, Joint EAML/ACE ASI File
Formats activity, October 2005.

[9] Frandsen P.E., Sabbadini M., Ghilardi M., Silvestri F., Proposal for the
Electromagnetic Data Interface (EDI) - XML file format and FORTRAN API, Joint
EAML/ACE ASI File Formats activity, October 2005.

[10] Baker, F. (contact), HDF5 User's Guide, HDF5 Release 1.6.5, November 2005
(http://hdf.ncsa.uiuc.edu/HDF5/)

[11] Martinaud J-P., Frandsen P.E., Vandenbosch G., The Ace Activity On Standardized
File Formats For Electromagnetic Software, Proc. EuCAP 2006.

[12] Mioc F. (ed.), Field Data Dictionary, ACE- 2, Document Number FP6-IST-508009.
[13] Volski V. (ed.), Currents DD, ACE- 2, Document to be released.
[14] Silvestri F and Ghilardi M., Electromagnetic Data Interface, FORTRAN User Manual

- EDI Level 0 and Level 1, ITLink Srl, Livorno, 2007.
[15] Silvestri F and Ghilardi M., Electromagnetic Data Interface, FORTRAN User Manual

- EDI Level 2, ITLink Srl, Livorno, 2007.
[16] Silvestri F and Ghilardi M., Electromagnetic Data Interface, MATLAB User Manual,

EDI Level 2, ITLink Srl, Livorno, 2007.
[17] Silvestri F and Ghilardi M., Electromagnetic Data Interface, C++ User Manual, EDI

Level 2, ITLink Srl, Livorno, 2007.
[18] P. E. Frandsen, M. Ghilardi, F. Mioc, M. Sabbadini, F. Silvestri. The Electromagnetic

Data Exchange: Much More Than A Common Data Format, Proc. EuCAP 2007.

 47

http://www.antennasvce.org/

	1. Introduction
	2. Data exchange basics
	3. An outline of the EDX
	3.1 The meaning of data – the Data Dictionaries
	3.2 The form of data – the EML
	3.3 The handling of data – the EDI
	3.4 EDX Companion Tools

	4. Data Dictionaries
	4.1 The structure of physical quantities
	4.2 The structure of data dictionaries
	4.2.1 Mathematical support
	4.2.2 Physical quantities
	4.2.3 Representation conventions

	4.3 A data dictionary example
	4.4 Alternative representations of simple quantities
	4.5 More complex data structures

	5. The Electromagnetic Mark-up Language
	5.1 (Absolute) XML basics
	5.2 The EML types
	5.2.1 The header
	5.2.1.1 <Stamps>
	5.2.1.2 <Origin>
	5.2.1.3 <UserText>

	5.2.2 The Declarations and the EML <Variable>
	5.2.2.1 <Variable> with data
	5.2.2.2 Domains and dependencies
	5.2.2.3 <Variable> with references
	5.2.2.4 Units

	5.2.3 The <Data> element
	5.2.4 The <Application_data> element
	5.2.5 Organising a data set with EML
	5.2.6 Advanced data structuring
	5.2.7 EML syntax in Extended Backus-Naur Form

	6. Electromagnetic Data Interface
	6.1 Outline of the EDI
	6.2 EDI Level 0: Basic functions.
	6.2.1 File functions
	6.2.2 The header functions
	6.2.3 Managing <Variable>s in <Declarations>.
	6.2.4 Output – creating variables and saving data in EDI files
	6.2.4.1 Creating an EDI variable with class and domain specification
	6.2.4.2 Adding features to a <Variable> for data
	6.2.4.3 Making a container
	6.2.4.4 Making a simple variable
	6.2.4.5 Transparent IO
	6.2.4.6 Saving values in an EDI <Variable>.

	6.2.5 Input of data from EDI files
	6.2.5.1 Obtaining information about EDI variables
	6.2.5.2 Getting the values of an EDI variable

	7. Final remarks
	8. References
	

