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An introduction to the Electromagnetic Data Exchange language 
 

1. Introduction 
 
The Electromagnetic Data Exchange (EDX) language system has been developed in the 
EAML and ACE projects [1, 2]. Although not accepted by any formal body, it is the goal for 
it to become a reference for data exchange among electromagnetic modelling software tools, 
at least in Europe. The EDX background and the requirements are covered in a number of 
reports and conference papers to which the interested reader is referred [5,7,8,11,18].  
 
The diversified nature of electromagnetic modelling techniques and the quest for the best 
modelling solutions for each problem encountered, make it necessary to use different tools in 
combination to take advantage of the most efficient method on each part of an antenna 
system at different stage of its design and development cycle. The exchange of data among 
the software tools is therefore a very important aspect of antenna modelling, both for research 
activities and for industrial use, and the primary approach used for this purpose is the 
exchange of data in files.  
 
Most antenna modelling tools use proprietary data formats, while they all handle the same 
physical entities: field, currents, geometry, and transforming data from one format to the 
other or writing functions to do so is a costly chore. It is quite evident that a common data 
format, widely accepted within the antenna community, would lead to much easier 
interchange of data, with the potential of making a much wider range of modelling options 
available to all its members. 
 
The need for common way to describe physical objects and quantities involved in the 
electromagnetic modelling of antennas has been stressed by many people at least for the past 
20 years or so. Actions to fulfil this need have been promoted since the early 1990’s [5]. 
More recently the MADS project, funded under the EU-FP5 programme, has produced a first 
draft for a common format, the Electromagnetic Data Format (EDF). Unfortunately, the 
limited resources available resulted in limited flexibility and the absence of a plane-text data 
file option. To overcome these limitations the Antenna Software Initiative of the Antenna 
Centre of Excellence (an EU-FP6 Network of Excellence) and of the European Antenna 
Modelling Library team, working under ESA contract, have joined forces to develop the 
Electromagnetic Data Exchange language. 
 
This report is intended as an introduction for those who will actually integrate the EDX in 
their software for day to day use. In section 2 the three main components of the EDX are 
introduced. In the sub-sequent sections the three main elements of the EDX are discussed and 
it is shown how the system can be integrated in existing software. This can be done in a quite 
simple manner or more advanced solutions can be made depending on the required level of 
flexibility.  
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2. Data exchange basics 
 
The Electromagnetic Data Exchange language is devoted to simplify the transfer of 
information among electromagnetic modelling tools with the additional requirement to use a 
form which is also convenient for the human user. 
 
Information transfer has been studied in detail for many decades and there are plenty of 
model from which is possible to draw inspiration when attempting to define a new language 
for a certain class of data, for instance the ISO/OSI model for communication protocol [3]. 
Since the objective of EDX is to allow the transfer of information among different parties, the 
data to be handled with EDX are static, i.e. there are not supposed to be manipulated in the 
form used they have. Of course, the closer they are to a form suitable for processing the 
better, as this minimises the cost of reading and writing them, but compromises going in the 
opposite direction are to be accepted from the outset when dealing with a language to 
exchange data among very diverse antenna modelling and measurement systems. 
 
A very basic example is the fact that different programming languages store matrices with 
different ordering of the indices and only one can be used as reference for the language. 
Incidentally, EDX is structured in such a way that this particular aspect is invisible to a 
developer using the I/O library that implements it. Still if the indices have to be reordered 
there is inevitably a small performance penalty with respect to the case where no reordering 
occurs. 
 
There main elements are essential to fully define the data exchange protocol for static data: 
meaning, structure and layout, roughly corresponding to the two top layers of the ISO/OSI 
model: application and presentation. The remaining five, dealing with the detail of data 
transport from source to user, are left to the computing platform by using the facilities offered 
by them.  
 
The meaning of data is probably the most difficult part, it is usually very well understood but 
it is also quite difficult to explicitly formulate it as this entails attention to a lot of details 
which are often implicitly assumed, while for transparency and consistency it is important to 
have them completely spelled out in the definition of the language.   
 
The structure of data reflects the physical background of data, which dictates the best way to 
organise them to make sure they can be easily understood by humans and handled, as easily 
as possible, by computer programs. 
 
The layout of data requires serious thinking to select a flexible and robust solution, including 
the selection of a storage format to put them on computer files or other digital storage and 
transmission means. However the power offered by information technology makes it possible 
to implement very flexible and elegant solutions at this level with a relatively small effort. 
 
Figure 2.1 illustrates how these three elements can be accommodated in a relatively simple 
structure. Meaning is captured by using appropriate naming and structuring the information 
in different levels, each capturing the specifics of one element. For example, the presence of 
an element named ScanRange in the Field object is used to show that the latter is a function of 
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the first, while at the next level the ScanRange is declared to be spherical and to have three 
elements, two being angles and the third a distance. 
 
The use of multiple levels also introduces flexibility. It is quite easy to imagine changing the 
scan range from spherical to rectangular by just pointing to a different definition. Therefore it 
is also possible to extend at a later stage the number of possible scan range types by just 
adding new ones without compromising existing data sets.  
 
Finally the structure also suggests a layout. Translating the boxes into independent blocks of 
data and labelling them with their names produces a very readable layout. Each element can 
also be given a name and the link to lover levels can be put next to it. 
 
In the artificial intelligence domain this type of systematic representation of the elements of a 
specific domain of knowledge is called ontology. The building rules well known and they are 
quite similar to the rules governing human languages and the communication of meaning 
between human beings (linguistic and semiotic). These rules together with the practical 
objectives of a data exchange facility have been kept well in mind while designing and 
implementing EDX. 
 

Field

Frequency 

H 

ScanRange 
Projection 
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ScanRange:Spherical

Theta 
Phi 
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Projection:Spherical
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Angle

Angle

Distance 

Class Subclass 
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Figure 2.1 – The content of a simple data set to exchange field data 
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3. An outline of the EDX 
 
When approaching the development of a data exchange language, three key questions must 
be considered: 

• What data shall be handled?  

• How shall the data appear in the file?  

• How shall software tools access these files? 
 
Since the EDX language should answer these questions on behalf of a rather large community 
of scientists and engineers, it was felt necessary to lay down a small set of basic requirements 
that could be shared by many. The EDX development has been the following tenets: 

1. Capability of handling of most common data sets in the field of Antenna and 
Electromagnetic Engineering. 

2. Possibility to tailor and extend the data sets without breaking the validity of data 
files. 

3. Easy to understand human-readable data files option. 
4. Flexible data access to support the different needs of a wide variety of algorithms, 

tools and design procedures. 
5. Ability to handle multiple representations of the same physical or mathematical 

quantity. 
6. Possibility to store meta-data (author, date, comments) as well as special private data 

required by some tools. 
7. Openness to future revisions and extensions and robustness to withstand the changes 

involved. 
8. Possibility to implement an open and freely available library for access to data. 
9. Possibility to handle large amounts of data via interfaces to high performance 

standards. 
10. Platform independence –with respect to both software and hardware. 

 
Many robust data exchange solutions compatible with these requirements are available thanks 
to the large effort devoted worldwide to this crucial issue of the information technology era. 
Selecting the right starting point already requires a significant ingenuity. Past experience 
within the antenna community has shown that a simple format based on a line-by-line 
description of the file contents would be severely limited. At the same time, very flexible 
formats having programming-language-like data constructors have proven to be rather 
difficult to use for the average developer, while high-performance solutions, like NetCDF [6] 
or HDF5 [10], pose some accessibility problems for non-expert users. The need for human-
readable files combined with that of handling large amount of data lead to the choice of XML 
(eXtensible Mark-up Language) [4], the leading reference for text-based data exchange, for 
small and medium sized data sets with the option to used high-performance formats for large 
ones. 
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An XML-based format satisfies all the above requirements, but number 9, and benefits of a 
well-established and very general framework, so it is an almost perfect candidate. 
Unfortunately a direct use of XML requires starting with an agreement on the representations 
of all quantities involved. Further analysis of the needs showed that it would have been 
impossible to produce such common representation in an acceptable timeframe. Building on 
the positive experience made with NetCDF in the EDF development, it was then decided to 
devise a simple, yet sufficiently flexible and open, language based on XML able to support 
an incremental growth and consolidation of the definitions. This also offered the opportunity 
to comply with requirement 9, by ensuring that the information carried by the new language 
would be compatible with existing high-performance data exchange standard, like NetCDF 
and HDF5. 
 
Most often the data to be exchanged, like a tabulated antenna pattern, are a series of numbers 
with no specific meaning on their own. Their meaning needs to be conveyed separately, 
either using a fixed format specified by some document or by attaching this information to 
the data. Since this information is the most relevant for the human reader, EDX goes one step 
beyond. It starts by specifying the meaning and structure of data and then gives the data. A 
neutral, quite general and simple grammar, easily expressed in XML, has been developed to 
describe the content of data files, the Electromagnetic Mark-up Language (EML). It features 
the basic elements required to represent generic electromagnetic quantities, like the ability to 
specify scalar, vector and matrix quantities and to associate measurement units to them. 
 
EML only provides the tools to specify how the information is conveyed, e.g. how different 
quantities are called or and structured, but it does not specify names and structures. Clearly a 
common data exchange language requires that also these elements are agreed. One major 
strength and weakness of natural language is that misunderstandings occur very easily just 
because the meaning of words and sentence structures cannot be strictly codified. A set of 
Electromagnetic Data Dictionaries (EDD’s) establishes the lexicon of the exchange language, 
i.e. how to convey the actual meaning using the EML grammar. For example, the possible 
types of component projections and sampling grids for a far field are uniquely defined to 
make information exchange about antenna patterns possible. 
 
Finally, a software library, the Electromagnetic Data Interface (EDI), allows standardised 
access to data in the EDX language. Of course, having the EML and the EDD’s in place 
would be sufficient to guarantee successful data exchange. Still everybody would have to 
write functions to read and write the EDX files, with an enormous duplication of effort, 
simple mistakes making the actual exchange difficult and, last but not least, an open door to 
“slightly twist” the language to fit some specific purpose. A software library relieves 
developers from the burden to write their own access functions, avoids mistakes and provides 
a common baseline to which any other implementation can be compared for compliance with 
the EDX reference. 
  
The structure of EDX can then be summarised using the following symbolic formula:  
 

EDX = EDD’s + EML+ EDI 
 

Furthermore a set of utilities, the EDX Companion Tools, is under development to help the 
use and extension of EDX. 
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3.1 The meaning of data – the Data Dictionaries 
 
In a Data Exchange Standard the Data Dictionary defines the meaning of data and the 
conventions for their exchange. The data dictionary defines exactly and in detail all the 
elements that shall appear in a data set.  
 
Note, that the term “data set” is used – not “files”. A data set is a collection of related simple 
data elements which as a whole models a physical entity such as a field, a bicycle tire or any 
other physical item. The data set may be in a file, it may be transmitted over a channel or it 
may reside in a memory area. For the time being it is assumed that a file only contain one 
data set. In section 4 it will be clear that the EDX enables several data sets to appear in the 
same file by using an approach similar to directories or folders in computer file systems. 
 
While EML defines the grammar, a data dictionary contains and defines the ‘words’ to be 
used to describe the main physical entity, be that a field or a bicycle tire. In other words, it 
establishes the precise meaning of the data found in the data set, how they are represented 
numerically and the conventions adopted for their exchange; For instance, the implied time 
dependence in spectral representations (e.g. e+jωt).  
 
A physical entity is seldom atomic. Therefore each data set contains a number of elements, 
each one having its own definition and representation. Often these lower level entities appear 
in different data sets. The most obvious example is frequency; another one are reference 
systems. It is worth noting that in most cases these lower level entities have a more abstract 
nature that he main one,  
 
The definition of a data dictionary is a lengthy and rather complex matter – especially if 
many do participate to it as required for a common reference language. To streamline the 
definition of EDX, the whole ‘universe’ of antenna modelling quantities has been separated 
in homogeneous ‘sub-universes’, like fields, currents, geometries, which are the object of 
separate data dictionaries. This choice raises the issue of coherence across the different 
dictionaries, for example ensuring that the frequency quantity has the same definition in all of 
them. At the same time it is necessary to ensure that the physical and mathematical meaning 
associated to a given name is univocally defined across the entire ‘universe’ [5]. A global 
data dictionary is used for this purpose. 
 
Six data sets have been initially identified. Namely: 

1. Fields (near, far and spherical wave expansion) 
2. Induced currents on various geometries 
3. Green’s function for layered structures 
4. Circuit parameters – [S], [Y] and [Z] 
5. Modal expansions 
6. Geometry. 

 
Currently the lexicon required for fields (near, far and spherical wave expansion) and 
required for currents and meshes has been fully defined [12,13], while a draft exists for the 
global dictionary involving all the six data sets listed above. 
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3.2 The form of data – the EML 
 
The definition of the language grammar is a very delicate step as it has a huge impact on how 
the quantities defined by the Data Dictionaries will be described in practice and may actually 
pose severe limits to it.  
 
An extensive analysis was made [7,9] leading to the identification of two fundamental and 
very common data structures: n-dimensional matrices, to represent nD-tensor fields, and 
hierarchical compounds, to represent the logical and lexical connection among data. The 
grammar selected to describe their structure is inspired to NetCDF [6] and, as already said, it 
is a specialisation of XML.  
 
The key idea is that a single data entity, the variable, is sufficient to the static representation 
of data stored into files. A variable may or not depend on other ones, via its domain, thus 
allowing the representation of sampled functions of n variables. A variable may have multiple 
components, each one of them being multi-dimensional. For example, an electromagnetic 
field sampled on a plane at multiple frequencies can be represented as: 
 

Variable emField 
 Domain frequency 
 Domain samplingX 
 Domain samplingY 
 Component E (complex, dimension=3, unit=V/m) 
 Component H (complex, dimension=3, unit=A/m) 
end 

 
A variable may also have no domains and its components may just be references to other 
variables, allowing the creation of hierarchies of aggregates. For example: 
 

Variable aDouble ReflectorAntenna 
 Component feedArray 
 Component subReflector 
 Component mainReflector 
end 

 
Note that, to make them more immediate, the two examples above do not use the actual EML 
grammar but a simplified version of it. The detailed discussion in section 4 is based on the 
actual grammar and complete description of it can be found in [4]. 
 
The examples above highlight an important feature of EDX, if an extra domain or component 
is added to a variable, a tool not knowing about it is still able to use the rest of the variable 
data, just ignoring the extra information. In the same way it is possible to add extra variables 
to a data set without compromising its usability from unaware tools. This is a fundamental 
improvement with respect to usual situation.  
 
EML files are organized in four main sections: Header, Declarations, Data and Application 
Data. The Header section contains general data like author, date, EDI version, etc. The 
Declarations section contains the definition of all variables as well as the values for small-
sized ones. Larger amount of numerical data are found in the Data section, arranged in 
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blocks, one for each of variable. Finally, the Application Data section is available for tools 
that need to save private data. 

3.3 The handling of data – the EDI 
 
The third element of EDX is a software library providing all functions required to access 
data. The Electromagnetic Data Interface is a relatively small library (a few thousands lines) 
written in C++ and equipped with application programming interfaces in C++, FORTRAN90 
and MATLAB® (only Level 2 at the moment). 
 
The library has a layered structure with each layer offering more advanced features compared 
to the lower one.  
 

Application (Antenna/EM software)

EDI Level 2: Defined aggregates: Currents, Far Fields, etc.

EDI Level 1: Data Selection Services: Slicing, Sorting, ....

EDI Level 0: Basic structuring, Multi-Dimensional Variables, 
File and Header Management

EDI ToolKit: Atomic Features, Low-level IO

I/O File Format Switch

XML Library NetCDF/HDF

EML File File

..........

File

 
Figure 3.1 – The overall structure of the Electromagnetic Data Interface (EDI) 

 
 
The main purpose of EDI is to simplify writing computer programmes using EDX, the 
highest level offers a single call access to complete data sets (although with very limited 
functionality) and more and more detailed access is available working at lower levels. The 
EDI Toolkit is a foundation layer and it is not accessible through the application 
programming interface. 
 
As clearly shown in figure 3.1 all functions offered by the library are independent from the 
actual format in which the data file is written, so that different ones can be used with no 
changes in the modelling tool. 
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3.4 EDX Companion Tools 
 
On top of the tree core elements described so far, it is the intention to offer a number of 
complementary utilities to enhance the use of EDX. These utilities are being developed and 
include: 

1. EDX Tool: an I/O function generator 
2. A generic EDX data browser 
3. A generic EDX data visualisation tool 
4. A validation tool for EDX implementations. 

Furthermore the possibility to develop a CAD data import filter associated to a Geometry and 
Materials Data Dictionary is being explored. 
 
The EDX tool is a code generator that takes as input a formal definition of a data dictionary, 
written in a language very close to EML, and a set of programming language fragments 
corresponding to the different constructs of the language and produces I/O functions for the 
data dictionary quantities by assembling and completing the fragments. 
 
The Generic EDX data browser allows the navigation through data stored in the EDX 
language. The data organisation and values are visualised in text form in a way that makes 
them easy to understand for human users with a good knowledge of antenna engineering and 
possibly no knowledge of computer science and software engineering. 
 
The Generic EDX data visualisation tool displays and prints the data stored in the EDX 
language. The data are visualised in graphic form in a way that makes them easy to 
understand for antenna engineers and following the common practices of this discipline. 
 
The Validation tool for EDX implementations performs the validation of I/O functions 
providing access to data stored in the EDX language, providing a detailed report of all non-
compliances found in the files generated by them. It is accompanied by a set of reference data 
files in the EDX formats to check input capabilities of other tools. 
 
The CAD data import filter is intended to be a simple tool able to translate geometrical 
descriptions found in CAD files and directly compatible with a Geometry and Materials Data 
Dictionary into an EML file. Some advanced capabilities, like geometry healing and a smart 
visualisation of 3D shapes may also be included. 
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4. Data Dictionaries 
 
The main purpose of a data dictionary is to define the information content of a data set. 
Typically the information relates directly to the values of a physical quantity and the 
objective of the data dictionary is to ensure that the meaning of all values is clearly and 
univocally defined. Most of the physical quantities involved in antenna engineering have a 
rather complicated structure, which inevitably inherited by their mathematical and numerical 
representations. The data dictionary must specify the complete structure and provide 
accessory information to make data exchange easy. 
 
For example, the electromagnetic field is usually represent by engineers has an E and an H 
component, each being 3D vector quantities. Then depending on the type of representation, 
time or space domain, each vector component is a real or a complex quantity. Further to this, 
to fully qualify the field, say in the spectral domain, it is necessary to specify the frequency at 
which it is given, the notation used for the time dependency, which type of projection has 
been chosen for the vector components and, last but not least, the sampling grid. All these 
aspects are clearly defined by the Field Data Dictionary [12]. This field example will be used 
throughout this section to illustrate the various aspects involved in the definition of data 
dictionaries. 
 
The ESA report “System Analysis and Requirements for an Electromagnetic Data Exchange 
Standard” [7] contains a lot more details and examples on the Data Dictionary theme. Section 
III “Intender readership and usage” gives an indication of where to find the information most 
relevant to the building of data dictionaries. A short description of a possible building 
procedure is found in Part 3, Section 5. 
 

4.1 The structure of physical quantities 
The large majority of physical quantities used in antenna engineering have the mathematical 
structure of n-D tensor field defined over some domain. In most cases the n-D tensor is mono 
dimensional, i.e. the quantity is a vector field. They are usually parameterised by some 
additional quantity, like the frequency for spectral domain representation of fields. In the end, 
they can be seen as n-valued functions defined over p-dimensional domains. To be given a 
numerical representation, these quantise once they have been discretised in some way.  
 
Therefore it is easy and natural to give them a matrix representation. The only very 
significant exception to this rule is the physical description of antennas, geometry and 
material properties, which requires specialised representations. However, the single matrix 
holding the samples of the quantity does not provide a complete description. To fully 
describe a continuous physical quantity, no matter how it is discretised, it is necessary to fully 
specify the “rules” used to obtain the discrete version. There are several possible ways: 
sampling, piecewise or entire domain approximation, modal expansion; in all cases additional 
information is required to understand the meaning of the values available for the quantity 
itself. Mathematically this amount to specify the basis of the function space to which the 
quantity belongs used to obtain the series expansions from which the discrete version is 
finally obtained by truncation.  
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For instance if sampling is used there is need to provide the sample coordinates and the 
related reference system. Mathematically the initial quantity is a dependent variable, as its 
values are a function of the others, while the sampling coordinates are a set of independent 
variables defining the support on which the dependent one is defined. All these need to be 
packaged in a single whole to convey the complete meaning of data.  
 
Whenever a physical quantity is multi-dimensional there is also need to specify how each 
element of the corresponding tensor is to be interpreted. For example, in a 3D vector the first 
element could be the x component of a Cartesian projection or the ρ component of a spherical 
projection or anything else. Therefore one more quantity is needed. The rule adopted in EDX 
is that this quantity is a string vector holding the names of the axes on which the quantity is 
projected, e.g. {“x”, “y”, “z”}. The resulting overall logical structure is depicted in figure 4.1.   

i 

j k 

Dependent quantity

Independent quantities 

Components index

Figure 4.1 – Logical structure of a multidimensional quantity 
 
Containers are used in EDX to keep all these quantities. In many cases, e.g. for spatial 
coordinates, some of the independent ones are related to a single physical entity, e.g. 3D 
space, therefore other containers may be used on lower levels to collect them reflecting the 
logical relations among data items. 
 
Using the approach described so far, all quantities belonging to a data set can be kept jointly 
together in a hierarchical structure. Beyond making sure that logical relations are maintained 
and put in evidence , thus making data easier to understand, such approach has a another 
fundamental advantage: it offers a great deal of flexibility. Imagine that in a dictionary for 
electromagnetic fields it is chosen initially to use space sampling in Cartesian coordinates and 
that the three quantities X, Y and Z are used directly in the field container (figure 4.2). 

E = {e1, e2, e3,  …} 

Z = {z1, z2, z3, …} 

Y = {y1, y2, y3, …} 

X = {x1, x2, x3, …} 

Field 

Figure 4.2 – Field data container with fixed sampling axes 
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Then to use a spherical reference system it would be necessary to define a new field 
container, despite the fact that only the names of the three spatial axes changed. Of course the 
difference in meaning is quite substantial, but in the EML files the change is minimal, so a 
single function could handle both cases with no problems. There is more, assume now that 
having moved to a spherical reference, it is desired to handle the far-field case in which the ρ 
component can be dropped. If a Coordinates container has been used then the overall 
structure is maintained intact and I/O functions can easily be made that handle both cases 
(figure 4.3). 

Field 

Coordinates 

ρ 

ϕ 

θ 

Samples 

Field 

Coordinates 

θ

ϕ

Samples 

Figure 4.3 – Field data container with flexible sampling axes (via sub-container) 

4.2 The structure of data dictionaries 
In general, the definition of a dependent physical quantity can be split in the following three 
parts. 

• Mathematical support: the description of the domain of definition and its sampling 
• Quantity: the description of the structure of the quantity itself, e.g. a 3D vector 
• Representation conventions: pinpointing all details about accessory aspects, like the 

implied time dependency. 
EDX data dictionaries follow the same logical structure (figure 4.4). 

 

Mathematical support

Physical quantities

Representation conventions 
 

Figure 4.4 – Logical structure of a data dictionary 
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4.2.1 Mathematical support 
The mathematical support of a physical quantity can be very simple, e.g. the real line, or 
complicated, e.g. a multiply-connected 5-D manifold. The data set specification must 
describe the numerical representation used for it, which can range from a regular sampling of 
a real interval to a structured volumetric mesh. 
 
The support can in general be decomposed in a number of elements, like frequency or 
position. The values assumed by the quantity depend on each of these elements, which can be 
seen as the axes of a p-dimensional representation or as the indices of the p-D matrix 
associated to it. The dictionary contains the information required to describe each of them 
and they are called independent quantities or independent variables. In the electromagnetic 
field example there are three independent quantities. 

1. Frequency 
2. Time 
3. Spatial or spectral coordinates (depending on representation) amounting to 2 or 3 

independent axes 
 
Usually only the frequency or the time dependency will matter, but in principle antennas with 
embedded signal-processing capabilities have a time-dependent spectral-domain field 
representation and therefore both dependencies have been included in the dictionary. 
 
Sometimes the mathematical support of the physical quantity is defined indirectly. For 
instance when a functional expansion is used, like the spherical wave expansion for fields 
that implies an underlying spherical reference system. In this case the dictionary must specify 
the support used for the specific representation, e.g. the modal indices of the spherical wave 
expansion, since they constitute the actual “sampling” on which the numerical values of the 
modal field amplitudes are given. 
 
In other cases it may be necessary to include information about both levels: the physical 
support and the mathematical support. This occurs, for instance, for meshed geometries, 
where both the mesh itself and the list of mesh elements used as reference to build the basis 
functions (e.g. the internal edges) are needed to provide a complete description of the 
support; the mesh to specify the actual shape of the support, i.e. the physical object, and the 
list of mesh elements, to specify where each currents value is located. Note also for a same 
mesh currents values could be associated to patches, edges (the usual RWG basis) or vertices 
and this needs to be indicated as well. 

4.2.2 Physical quantities 
The physical quantities generally have a simpler structure than their support. They are mostly 
scalars or vectors or tensors. Therefore in the last two cases it is only required to specify the 
projection selected for them. Then of course, it is necessary to specify their numerical nature 
(integer, real or complex). In the electromagnetic fields example and just considering the far 
field case, in which only two components are relevant, there is a long list, including Cartesian 
components, spherical components, Ludwig projections, and several others. The selection 
between real and complex representation is clearly linked to the selection of time or spectral 
domain. Today complex numbers are always represented in real and imaginary part, but it is 
foreseen in the future to offer the option for Euler (polar) notation. 
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In some cases it is useful to separate the components of a single physical quantity to make the 
data set more flexible. In the Filed Data Dictionary the E and H components are considered 
two separate quantities, since in most cases only the E field is used for antenna problems. 
However the dictionary clearly indicates that whenever they are both defined within a same 
data set they must share the same support, to ensure physical consistency. 
 
Often, to save computation time and memory space, not all components of a physical 
quantify are specified in practice, exploiting symmetries and other physical properties. A 
typical case if the dropping of the vanishing radial field components in the antenna far field, 
another good example is the use of only a few elements of the dyadic Green’s function. The 
data dictionary should identify the needs in this area, since this is important to identify the 
most general way to represent them. The most effective way of representing the quantity 
depends on its structure and on the possible existence of multiple representations. Some 
example will clarify this rather tricky point.  
 
Example 4.1 - Electromagnetic field. The H component is often left unspecified, so E and H 
are handled separately; furthermore the radial component may be vanishing (far field), 
therefore both quantities may have two or three components. The latter aspect is taken care 
by selecting among the different specifications for the vector projection included in the 
dictionary. 
 
Example 4.2 - Spherical Wave Expansion. Out of the full 2N+1 by N space generated by the 
Cartesian product of the radial and azimuthal indices only about half of the combinations 
make sense, since it must be n>0 and |m|≤n. However to simplify handling and to avoid 
inserting in the data dictionary an a-priori choice of the ordering of indices, it was decided to 
store the full rectangular matrix, waiting for the foreseen possibility to handle sparse matrices 
directly in EML. 
 
Example 4.3 - S-matrix of a reciprocal device. Only the upper or lower triangular matrix is 
needed and an explicit listing of the index pairs can be used to obtain a crude but effective 
sparse matrix representation; in this way the S-parameter data are indexed by the pairs and 
not by the port indices. This case also applies to modal spectra for waveguides and to Green’s 
functions. 
 
As already discussed, both physical quantities and mathematical supports have often multiple 
representations. For instance, the electromagnetic field can be sampled in a spherical or 
Cartesian reference system and others as well and it can be decomposed according to several 
projection systems, Cartesian, Spherical, Ludwig 1, 2 and 3, and so on. The data dictionary 
should include all these representations, even if initially only a few will be used. This is very 
important to ensure that a suitable data set structure is chosen since the beginning.  

4.2.3 Representation conventions 
Representation conventions include all the accessory information required to fully qualify the 
physical quantity. For instance, the implied time dependency convention adopted, the 
normalisation impedance chosen for S-parameters or the power normalisation and the phase 
reference point for a radiated field. Also information about functional expansions may be 
required, like domain of convergence, range of validity (e.g. the minimum sphere of a 
Spherical Wave Expansion or the far-field distance for a far field). In general, in defining a 
data dictionary it is important to explicitly include all assumptions and conventions used to 
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arrive at numerical values given for the physical quantity and they should all be part in the 
data set, so as to make sure than reading the corresponding EML file there can be no doubts 
about the meaning f its content. 
 
In several cases it is possible to define reference conditions, which could be assumed to hold 
unless differently specified in the data. Then the data dictionary could report this assumption 
and avoid repeating it in each and every data set. For instance, it is customary to assume a 
normalisation impedance of 50Ω for S parameters. However, such approach should be used 
very sparingly, to void the need to always go back to a “reference book” to fully understand 
the data. A data set should contain all information required to fully qualify a physical 
quantity, with the exception of those cases in which the chance of ambiguity or doubts is so 
small that the user of data will seldom need to go back to the Data Dictionary definition to 
understand them. 

4.3 A data dictionary example 
An example of a data dictionary should help to clarify this rather thorny subject. Again the 
electromagnetic field is taken as reference; in particular the field radiated by a source in free-
space, which is a relatively simple entity. It is constituted by a pair of time-varying 3D vector 
fields, E and H, defined over the entire space minus the source region and it is assumed to be 
sampled within a region of space over a fixed grid of points.  
 
The corresponding data dictionary will include the definition of the following quantities, 
called classes to underline the fact that no values are associated with them: Field, Time, 
ScanRange, ProjectionComponents. The root class will be a container hosting all of 
them into a single data element, the ElectromagneticField, defined as follows. 
 
Class  ElectromagneticField 
 Component Time 
 Component ScanRange:*   ! * = all subclasses 
 Component ProjectionComponents 
 Component Field 
 
The Field class will define the E and H vectors, specifying the measurement units (V/m and 
A/m respectively), the data type used to quantify them (real numbers) and the size of each of 
their samples. It will also specify the overall dimension, i.e. total number of sampling points 
taken in space and time. 
 
Class  Field  

Dimensions (Time*ScanRange) 
Component E 

Units  V/m 
Type  real 

 Size  (ProjectionComponents) 
Component H 

Status optional 
Units  A/m 
Type  real 

  Size  (ProjectionComponents) 
 
Note that the dimensions are formally specified as the product of three other quantities, 
meaning the product of their actual sizes. The product is enclosed in parenthesis to indicate 
this indirect relation. 
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The Time quantity is much simpler, just a real vector with an undefined number of elements. 
 
Class  Time 
 Units  s 

Type  real 
Size  1 

 
The ScanRange quantity that specifies the space sampling is more complicated. First the 
sampling can be made in many different reference systems, thus a list of alternative 
subclasses is included in the definition. This fact is also indicated by the ScanRange:* 
notation in the ElectromagneticField declaration. Each subclass specifies the names of 
the 3 axes, their measurement units and data type. Also in this case no dimension is specified, 
so each component can be a vector of any length, the actual overall dimension of the 
ScanRange, i.e. the one used to compute the actual dimensions of the Field quantity, is the 
Cartesian product of these vectors. 
 
Class  ScanRange  

Subclass Cartesian 
 Component x 

Units  m 
Type  real 

 Component y 
Units  m 
Type  real 

 Component z 
Units  m 
Type  real 

 
Subclass Cylindrical 

… 
 

Subclass Spherical 
… 

… 
 
The ProjectionComponents class has a somewhat different nature. In principle, it would 
have been possible to state that the E and H vectors have length 3 and avoid any further 
complication. However the use of an extra class offers quite a number of possibilities. First it 
allows to specify in a convenient way the reference system chosen for the projection of the 
field vectors. Second it does so, using strings, which convey the exact names used in antenna 
engineering books, which can be used for data display and plotting. Third by defining 
subclasses with different sizes it would be very easy to take of the situations in which only 
two components are needed or known (e.g. on an equivalent surface or in the far field). 
 
Class  ProjectionComponents 

Type  string 
Size  3 

 Range  {[“x”,“y”,“z”]; 
 [“\theta”,“\phi”,“r”]; 
 [“a”,“b”,“r”]; 
 [“Az”,“El”,“r”];} 

 

TEX notation, e.g. \theta to indicate the Greek letter θ, has been chosen for the data 
dictionaries developed so far for name strings since it offers readability while supporting 
pretty printing of projection axes names, e.g. as labels in plots, with many existing tools. 
 

 16 



An introduction to the Electromagnetic Data Exchange language 
 

It is also interesting to see how the simple field dictionary illustrated above can be easily 
extended to cover the very common case in which fields are given in frequency-domain 
(Fourier transforms) rather than in time-domain and the time dependence is replaced by 
frequency dependence. Often spectral field representations are also used instead of space 
domain ones. The following examples list all changed and new quantities required to extend 
the dictionary to frequency domain fields. Note in particular the addition of the 
TimeDependency class to specify the implied time dependency convention and the fact that 
it is considered an attribute and not a component (see section 4.4 for an explanation).  
 
Changes 
 
Class  ElectromagneticField 
 Attribute TimeDependency 
 Component RepresentationDomain 
 Component Time 

Component Frequency 
 Component ScanRange:* 
 Component ProjectionComponents 
 Component Field 
 
Class  Field  

Dimensions (Frequency*Time*ScanRange) 
Component E 

Units  V/m 
Type  (RepresentationDomain.TimeType=”time” ? real : 

  complex) 
 Size  (ProjectionComponents) 
Component H 

Units  A/m 
Type  (RepresentationDomain.TimeType=”time” ? real : 

  complex) 
  Size  (ProjectionComponents) 
 
 
New quantities 
 
Class  TimeDependency 

Type  string 
Size  1 
Range  “+j \omega t” 

 
 
Class  RepresentationDomain 

Component TimeType 
Type  string 
Size  1 
Range  {“time”; “frequency”} 

Component SpaceType 
Type  string 
Size  1 
Range  {“space”; “spectrum”} 

 
Class  Frequency 

Unit  Hz 
Type  real 
Size  1 

 
The ElectromagneticField class is extended to hold the extra classes and, obviously, a 
new Frequency class is added. The Field class needs also some modification to 
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accommodate for the fact that now the field vectors can be either real (time domain) or 
complex (frequency domain). The syntax used is similar to that of the C/C++ condensed if, 
the part before the question mark is a condition, the first token after the question mark applies 
if the condition is true and the one after the colon otherwise. Finally the 
RepresentationDomain class is introduced to specify all possible combination of Fourier 
transformations for time and space.  
 
Clearly if the need arises at a later time, it would also be possible to specify independent 
transforms for each space axis just adding a subclass to the RepresentationDomain class. 

4.4 Alternative representations of simple quantities 
 
The EML (see section 5), following the XML approach, offers two different ways of 
expressing values associated to a quantity: as components and attributes. The basic difference 
between the two is that the second can only hold single immediate values. The more subtle 
difference, much more important from a data dictionary perspective, is that attributes do not 
offer room for extensions of the dictionary. As shown in the example in section 4.3 
components may actually refer to another class, which in turns hold several components, thus 
leading to the possibility of very sophisticated organisations of the data. By carefully 
designing this data structure it is possible to obtain a very flexible dictionary open to future 
modifications that do not invalidate the original structure. On the contrary, since attributes 
just old single immediate values, their definition can not be modified or changed into a 
component without making the resulting EML files incompatible with the older version. 
 
The choice whether some quantity should be represented by a component or an attribute is 
quite common. The rule to be applied is that only simple quantities that can be expected not 
to need changes in the evolution of the dictionary should be handed via attributes. To be more 
precise, the only thing that can be changed in an attribute is the list of admissible values. For 
instance in the field dictionary discussed in section 4.3 the TimeDependency attribute can be 
modified to extend its range from “+j\omegat” to {“+j\omegat”, “-j\omegat”}. On the other 
end, the RepresentationDomain could have been split in two attributes, one for the time-
frequency alternative and the other for the space-spectral one, but being conceivable that it is 
extended to cover the case of mixed spatial-spectral representation a component is the proper 
choice.  

4.5 More complex data structures 
 
There are chunks of data having a much more complicated logical structure than those 
discussed so far. The most prominent example is the geometrical representation of objects. 
Another one is the description of an antenna, even when limiting to its main elements, i.e. not 
listing all screws and washers. In general complex representations require the use of data 
trees or networks, in order to capture all links existing among their different components. A 
data dictionary for such entities must capture these relations, which are usually very 
important. For instance, it is relevant to know the position of the feed with respect to the 
reflector of an antenna. The EML provides special facilities to capture this complexity. 
However they are not discussed in this introductory presentation to avoid overloading it. The 
interested reader is addressed to the EDI manuals, until the matter will be covered by further 
EDX manuals. 
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5. The Electromagnetic Mark-up Language 
 

Initially it was believed that the data needed in EM data sets could be represented with 
extremely few basic blocks – simple named matrix building block (vectors and scalars being 
special cases of the matrix) where the elements of the matrix could be of the standard types 
such as integers, reals, complexes, logicals and characters plus a few extra features such as 
attributes. This would be little more structured version of the very common traditional data 
file organisation with a sequence of blocks each initiated by a tag on a separate line followed 
by some lines with numbers or characters. The analysis mentioned in section 3.2 and the 
work in the ACE and EAML groups revealed that a much more structured approach was 
needed, and here the XML was right at hand. The EML is thus very structured but in contrast 
to what might be expected it is not very big language. 
 

5.1 (Absolute) XML basics 
The absolute basic building blocks of the eXtendable Mark-up Language are tags, elements 
and attributes as shown in figure 4.1 where one of the EML elements are used as example:  
 

 

<?xml version="1.0" encoding="UTF-
<EDIFile  ………… >
…………

<Declarations>                                       
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>                              
<Component Type="double">                      

<Value> 0 90</Value>                         
</Component>                                   

</Variable>
…………

</Folder>                                          

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

<?xml version="1.0" encoding="UTF-8”?>
<EDIFile  ………… >
…………

<Declarations>                                       
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>                              
<Component Type="double">                      

<Value> 0 90</Value>                         
</Component>                                   

</Variable>
…………

</Folder>                                          
</Declarations>                                       

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

<?xml version="1.0" encoding="UTF-
<EDIFile  ………… >
…………

<Declarations>                                       
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>                              
<Component Type="double">                      

<Value> 0 90</Value>                         
</Component>                                   

</Variable>
…………

</Folder>                                          

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

<?xml version="1.0" encoding="UTF-8”?>
<EDIFile  ………… >
…………

<Declarations>                                       
<Folder Name="sph_1.cut" ID="0">

…………
<Variable Name="SC_Phi" Class="Phi" ID="3">

<Sizes> 2</Sizes>                              
<Component Type="double">                      

<Value> 0 90</Value>                         
</Component>                                   

</Variable>
…………

</Folder>                                          
</Declarations>                                       

Attribute

Root element opening tag

Root element closing tag

Element opening tag

Element closing tag

Attribute value XML declaration

 
 

Figure 5.1 - Basic XML concepts 
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The key building block in XML is the elements. An element is some text (denoted the 
element body) bounded by a set of tags denoted the opening tag and the closing tag. The tags 
are strings initiated by ‘<’ and ended by ‘>’. The opening tag contains the element type ID 
(e.g. ‘Variable’ in fig. 4.1) followed by optional attributes. An element attribute has a name 
(a string) and a value (a string in double quotes). Hence the opening tag  
 

<Variable Name="SC_Phi" Class="Phi" ID="3"> 
 
opens a element of type Variable which has 3 attributes - Name, Class and ID.  
The closing tag of an element only contains the division character ‘/’ followed by the type ID 
i.e. </Variable> in the example above. 
 
Very often it is adequate to use a so called empty element. Empty element are singleton tags 
(also called empty tags); they have no text between a pair of tags and the singleton is ended 
by the string ‘/>’. The information in an empty element is held in an attribute: 
 

<Domain Reference="SpherCut_Phi"/> 
 
A key and very important feature of XML is that elements can be nested to any level i.e. one 
element can contain other elements. In figure 4.1 the element type Declaration contains the 
element type Folder which again contains Variable etc. The nesting thus enable designer to 
build a rather complex language by defining simple types that can then be put into more 
complex types. 
 
Until now this mini outline of XML of has only been about form. Basically any gibberish that 
satisfies the above syntax can be considered as XML but it will of course be of no use. Hence 
the next step is to add meaning and this is really where the designer starts to eXtend. The idea 
is to define a set of types which is needed to hold the data of the desired data set. A type is 
made in a type definition. The type has a name (e.g. Declaration), some attributes if needed 
and a body which can contain simple data or it may in itself contain elements of other 
homemade types. In the next section this is done for the EML which is thus an example of the 
eXtension process. A data set will then be a collection of instances of the defined types. 
 
This very, very limited discussion of XML is only intended as an outline for the reader to 
understand the following sections. There is of course much, much more to be said about 
XML. The interested reader is referred to one of the many web-sites (a search for 
“Introduction to XML” on the web yields more that 100000 hits). 

5.2 The EML types 
 
The EML includes four main sections of a data sets (e.g. in a file). These four sections are 

• the header 
• the declarations 
• the raw data  
• the application data  section. 

 
The rest of this chapter describes in detail each one of them. The declarations section, which 
conveys the meaning and defines the structure of data is the core of an EML and therefore 
has received most of the attention in the discussion. 
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5.2.1 The header 
 
With today standards people is accustomed (or even expects) that any data set is followed by 
a practically complete amount of information about its origin and the standard to which it 
complies. In EML this information is collected in the <Header>. This element is mandatory 
and it looks as follows: 
 
<Header> 
  <Stamps> 
    <Version>EDI Version 1.00.00</Version> 
    <Format>XML</Format> 
    <DateTime>2008-01-20T13:27:53Z</DateTime> 
  </Stamps> 
  <Origin> 
    <Tool> 
      <Name>GRASP9</Name> 
      <Version>9.4.01</Version> 
    </Tool> 
    <Project></Project> 
    <User> 
      <Name>Poul Erik Frandsen</Name> 
      <Affiliation>TICRA</Affiliation> 
    </User> 
  </Origin> 
  <UserText>Field data in cuts</UserText> 
</Header> 
 
The <Header> can contain three elements: <Stamps>, <Origin> and <UserText>. 

5.2.1.1 <Stamps> 
The <Stamps> element contains three elements that will be added automatically by the EDI. 
 
The <Version> tells which version of the EDI that has created the file. It is here assumed, that 
the file has been created with functions in the EDI library. Some developers may find it 
attractive to manipulate an EDI file with homemade functions (routines) that perform all 
input and output using READ and WRITE (Fortran90) or getf and putf (C/C++) statements. 
This is definitely not recommended! Rather, all access should be made with the EDI library. 
 
Next, the <Format> tells that this is an XML file. When the EDI is extended with features for 
other formats (e.g. HDF5), a single format switch will be available for the developer, and a 
very simple extension of a software tool that uses the EDI will enable output in any of the 
available formats. 
The <DateTime> tells the time when the file was created i.e. when it was closed. 

5.2.1.2 <Origin> 
In this element information is collected about  

• the software tool that created the file 
• and in which project 
• and by which user 
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The <Origin> in itself and all contained elements are optional. It is, however, polite if a tool 
and its user reveal this information. The high level EDI Library routines for output of 
complete fields or currents  (known as level 2 routines) will, however, leave these fields 
empty. 

5.2.1.3 <UserText> 
This element is intended for any number of text lines that the output tool or the user might 
find adequate. In the case of a parameter study where the same tool is run many times one 
may add information about which parameter configuration was used to create the present data 
set. The element is optional. 

5.2.2 The Declarations and the EML <Variable> 
 
The “real” data i.e. all the various numbers and strings that describe physical and 
mathematical entities in an electromagnetic data set such as a set of currents are managed in 
the two elements <Declarations> and <Data>. Each data item is described in a <Variable> 
element in <Declarations> whereas the corresponding numbers or characters (the raw data) 
appear in the <Data> element (see section 5.2.3). This is the rule unless few values are 
involved, in which case the data are kept together with the declaration in a local <Value> 
element. The reason for this separation is simple. By keeping all data descriptions in a fairly 
short element (usually in the top of the file if the data set is stored as such), it is simple for a 
user to get a clear overview of the content of the data set e.g. using a standard text editor. 
Further, the software that handles the data set can quickly read the short descriptions and 
perform practically all consistency checks before massive input of large amounts of numbers 
is initiated. The receiving software tool can actually quickly check if the content of the data 
set is relevant or if it should be rejected. 
 
The <Declarations> element looks as follows: 
 
<Declarations> 
   <Folder Name="folder_name" ID="0"> 
      <Variable …> 
         … 
      </Variable> 
         … 
      <Variable …> 
         … 
      </Variable> 
   </Folder> 
</Declarations> 
 
At the present there can only be one <Folder> with the integer ID equal to 0. This element 
type is intended for future use and will not be discussed further here. If the data set is saved in 
a file, the EDI Library will set the folder name equal to the file name. 
 
As discussed in section 3.2, the EML must be able to represent two fundamental and very 
common data structures: n-dimensional matrices, to represent nD-tensor fields, and 
hierarchical compounds, to represent the logical and lexical connection among data. The key 
element type designed for this purpose is the <Variable>. The type name is inspired by 
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NetCDF and it designates that the content may be changed if e.g. a data set is input, modified 
and later output from a program.  

5.2.2.1 <Variable> with data 
The <Variable> appears in two forms: 1)  

1) with its own values: The variable will be made to hold data of some shape and type 
e.g. a vector of string-values or a matrix of integers. 

2) with references to other variables. The variable will not have any real data (with the 
exception of simple EML Attributes – see below). Rather, it will contain references  
that points at other EML variables in the same file. 

In the first case, an instance looks as follows: 
 
<Variable Name="variable_name" Class="class_name" ID="int>0"> 
   <Attribute Name="attrb._name1">attrb._value1</Attribute> 
   …… 
   <Attribute Name="attrb._name_j">attrb._value_j</Attribute> 
   <Sizes> list of n positive integers (n > -1) </Sizes> 
   <Domain Reference="first name of another variable"/> 
   …… 
   <Domain Reference="n’th name of another variable"/> 
   <Component Type="a valid EDI type"> 
      <Value> some values of the above type </Value> 
   </Component> 
</Variable> 
 
The italic are where the actual data appear. The <Variable> type has three XML attributes: 
Name, Class and ID. The name must be unique within one folder and the usual rules for 
names apply: first character must be a letter, then a sequence of letters, digits or underscore 
(no special characters and no blanks). These naming rules apply to all names in EML. 
The class name is optional, but it is strongly recommended that classes are used for all 
variables in a data set. Not doing so will basically prevent the use of many existing and future 
features of tools based on EDX. Hence all instances of variables should belong to some class 
from the joint pool of classes derived from the Data Dictionaries. If no class is available, the 
developer should prepare a new class together with the other developers that shall use the 
data set. The class description specifies exactly what to find in the variable i.e. between the 
element tags (see sections 3.1 and 4). 
Finally, the ID is an internal integer identifier managed by EDI – don’t mess with these in an 
editor. 
 
The first content of the <Variable> type is a sequence of EML attributes (don’t confuse these 
with the XML attributes that appear in the opening tag). The EML attribute is a type that has 
been designed by the ACE-EAML group to hold simple descriptive data which in general do 
not change. The attribute has a name. As an example, the time dependency of a field is stored 
in an EML attribute: 
 

<Attribute Name="TimeDependency">+j \omega t</Attribute> 
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Next you will see the <Sizes> element. This element is empty or it contains a sequence of 
integers. If it is empty, the <Variable> either holds a simple scalar of one of the EDI types or 
the variable is a container i.e. it has no data in itself but references to other variables (see 
5.2.2.3 4.2.2.2). A scalar <Variable> will look as follows: 
 
<Variable Name="My_Control1" Class="Switch:String" ID="3"> 
  <Sizes></Sizes>                               
  <Component Type="string">                       
    <Value>On</Value>                          
  </Component>                                    
</Variable> 
 
If the <Sizes> is non-empty, the integers tells the size of an n-dimensional array also denoted 
a Rank n array where each element is a <Component> of one of the available EDI-types. 
Structures as components are under consideration. If the <Variable> has only one 
<Component> there is no need for naming it. If, however, more components are needed, each 
component has a name: 
 
  <Component Name="Double_Components" Type="double">      
    <Value> 1 2 3</Value>                                 
  </Component>                                            
 
In the following example a 1D variable of class Frequency has a component of EDI type 
double i.e. a double vector of length 3 due to the <Sizes>. (Since no units are specified, the 
default unit Hz is assumed. See more about defining and using a class in section 4). 
 
<Variable Name="My_Frequency" Class="Frequency" ID="1"> 
  <Sizes> 3</Sizes>                                           
  <Component Type="double">                                   
    <Value> 300000000 310000000 320000000</Value>             
  </Component> 
</Variable> 
 
The rank can be any positive integer. In the Fields DD a rank 7 array may occur i.e. there will 
be 7 integers in <Sizes>.  A <Variable> can have any (positive) number of <Components> of 
different EDI types, but they are all bound to the same <Sizes> as in the following example, 
where there are 3 integers in the first component and 3 strings in the second: 
 
<Variable Name="My_Mixed_Var" Class="Mixed_Class" ID="1"> 
  <Sizes>3</Sizes>                                       
  <Component Name="Double_Components" Type="double">      
    <Value> 1 2 3</Value>                                 
  </Component>                                            
  <Component Name="String_Component" Type="string">      
    <Value> "String1" "String2" "String3"</Value> 
  </Component>                                            
</Variable>  
 
In the above example three values appear in a <Value> element inside the <Variable>. This 
option can be used in EML if the number of values is small. If the number of values is larger, 
the values will appear in the <Data> element to avoid long <Variable> elements in the 
<Declarations>. If the file has been created with the EDI, the library will determine when the 
values shall appear in the <Variable> and when in <Data>.  
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5.2.2.2 Domains and dependencies 
The last element type that appears in a <Variable> with own data is the <Domain 
Reference=”…”> element which contains a reference to another EML variable in the file..  
This element - an empty XML element (see section 5.1) - is used to tell that the referenced 
variable is part of the domain of the <Variable> it self. 
 
EML <Variables> that have <Domain>’s are called dependent. Otherwise they are called 
independent – such as the Frequency variable shown above. The Reference attribute points at 
another EML variable that must be in the data set (e.g. in the file). In the following example 
there are four <Domain Reference=’…’/> specified telling that the values of the pattern was 
calculated at points obtained as the Cartesian product of the four variables: 
 
<Variable Name="My_Ptn" Class="Field:RadiationPattern" ID="6"> 
  <Sizes> 2 2 161 1</Sizes>                                   
  <Domain Reference="My_Ptn_ProjectionComponents:Ludwig3"/> 
  <Domain Reference="My_Ptn_Phi"/>                          
  <Domain Reference="My_Ptn_Theta"/>                        
  <Domain Reference="My_Ptn_Frequency"/>                    
  <Component Type="dcomplex"/>                                
</Variable>                                                   
 
Clearly, the <Sizes> specification of the dependent <Variable> must correspond to the 
<Sizes> of the <Variable> on which it depends. Unfortunately, the EDI Library will not and 
can’t perform this check! It is thus up to the developer to ensure that the <Sizes> are 
consistent when a tool outputs a data set. (It is quite easy to implement the check for a 
<Variable> which has been input using EDI function calls, but then what shall be done if the 
<Sizes> doesn’t fit?). 
 
The <Domain> can thus be used, and should be used, to tell a receiving software tool the 
dependencies among the various elements in the data set. Finally, in the <Sizes> in the above 
example one can see that "My_Ptn" is a 4D double complex array with 1×161×2 ×2 elements 
and obviously corresponding to 1 frequency, 161 θ-values, 2 φ-values and with two field 
components. Note, that the EDI Library stores the domains in reverse order of the one known 
within the software tools (the order in which the domain variable names are given to an EDI 
function). So basically the double complex field pattern values have been created in a loop 
structure as follows: 
 
     Loop over Frequencies (here 1) 
   Loop over Theta values (here 161) 
     Loop over Phi values (here 2) 
       Calculate component 1 and component 2 
         pooL 
       pooL 
     pooL 
 
In practice the developer/user should avoid to mess around the actual values in a file and they 
are often not saved in nice columns, but in practice it is often needed to fetch the data with a 
tool that doesn’t “speak EDX” and in that case the above information is vital. 
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5.2.2.3 <Variable> with references 
In 5.2.2.1 the <Variable> with own data was introduced. For several reasons, however, 
another option has been added to the EML <Variable>. Here the <Variable> doesn’t posses 
its own data. Rather, it has references to one or several other EML <Variable>’s. A typical 
example: 
 
<Variable Name="My_Ptn_Field:Far" Class="Field:Far" ID="7">    
  <Attribute Name="SpaceTypeAxis">Space</Attribute>              
  <Attribute Name="TimeDependency">+j \omega t</Attribute>         
  <Attribute Name="TimeTypeAxis">Frequency</Attribute>           
  <Sizes></Sizes>                                                
  <Component Reference="My_Ptn_Frequency"/>                    
  <Component Reference="My_Ptn_ScanRange:ThetaPhi"/>           
  <Component Reference="My_Ptn_ProjectionComponents:Ludwig3"/> 
  <Component Reference="My_Ptn_Field:RadiationPattern"/>       
</Variable>                                                      
 
In the above example the applications of <Component Reference=”…”> is shown where the 
<Variable> element now appears as a compound, which tells the connection among data. The 
compound is also denoted a container. Note that the <Sizes> element is empty – it must 
however be there. Since compounds can reference other compounds (obviously a ring of 
references is not allowed), this type of <Variable> enables a joint handling of very complex 
data sets – all <Variables> in the data set can be connected either with a <Component 
Reference=”…”> or with a <Domain Reference=”…”> in a multi-dimensional treelike 
structure and thus show the logical connection among data. If a compound is not referenced 
by any other <Variable> it is a top-level compound, i.e. it acts as the entry to a large data set. 
 
The compound also enables the handling of several data sets in the same EDI file, and some 
data sets may even share some features. Two fields may e.g. reference the same Frequency 
variable. The use of compound is not mandatory. A group of developers can decide to 
represent their data set with a set of unconnected <Variable>s. The handling of the references 
is, however, quite easy when the idea has been caught and the EDI Library has a nice 
collection of functions for managing references. 

5.2.2.4 Units 
As these notes are being prepared, the EML is under further development. The observant 
reader may have noticed that the issue of units has not been discussed at all. Initially the idea 
was that default units should be agreed upon for all elements in a data dictionary and units 
should thus be implicit. As an example it was agreed that the unit for Frequency should be Hz 
(thus usually leading to very large numbers in <Variable>s of this class). 
The first experiences quickly revealed that this was much too stringent. For this reason a new 
Unit attribute has been added to the <Component> element which now may look as follows: 
 
  <Component Name="…" Unit="…" Type="(some EDI type)">      
 
The Unit is optional. If it doesn’t appear, the data item is given in default units as agreed 
upon in the Data Dictionary. However, it strongly recommended to specify units since their 
availability makes data much safer to use, e.g. allowing display of units in processing and 
visualisation tools.   
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5.2.3 The <Data> element 
 
If  the number of data values in an EML <Variable> is larger than a few, the values will not 
appear together with the declaration in a <Value> element. Rather, the data will appear in a 
corresponding <Variable> in the <Data> element with exactly the same name. The relation 
between the <Variable> in <Data> and the corresponding <Variable> element in the 
<Declarations> is simple: They have the same name, the components have the same names 
and EDI types and the attribute RefID has the same value as the ID attribute in the 
declaration. 
 
<Variable Name="(declared variable name)" RefID="(integer>0)"> 
  <Component Name="(component name)" Type="(EDI type)"> 
    <Value> 
      …… at lot of data e.g. hundreds of numbers …… 
      …… 
    </Value> 
   <Component> 
   …… 
   <Component Name="(component name)" Type="(EDI type)"> 
    <Value> 
      …… at lot of data e.g. hundreds of numbers …… 
      …… 
    </Value> 
   <Component> 
</Variable> 
 
In a file the raw data are stored in a way which is adequate for the EDI Library functions 
(usually 2 numbers pr. line). There is, however, no rule in the EML for this format. The 
sequence of the data values are, however, related to the declared <Domain Reference=”…”> 
elements of  the <Variable> variable in question. 

5.2.4 The <Application_data> element 
The last type of element in the EML is the <ApplicationData>. The syntax is extremely 
simple: 
 
<ApplicationData> 
    … any data what so ever … 
</ApplicationData> 
 
This section is intended for a programs private data i.e. data that are not part of the data set 
in question. As an example the field data dictionary doesn’t include any specification of 
bearing but some software tools actually used this information. Hence the developers of a 
specific tool can add all data which are not intended for other tools in this element i.e. a tools 
private data. The form of data items inside the element is not prescribed, but it is of course 
recommended to use an XML extension or even use an EML-like form if possible. This will 
make it easier to maintain the content in the future and a user can easily understand the data if 
the file is inspected with an editor. Hence in stead of using 
 
<ApplicationData> 
    0.04 
</ApplicationData> 
 

 27



An introduction to the Electromagnetic Data Exchange language 
 

one should use something like 
 
<ApplicationData> 
   <Feed_position Unit=”mm”> 0.04 </Feed_position> 
</ApplicationData> 
 
or maybe even  
 
<ApplicationData> 
   <Variable Name="Feed_position"> 
      <Component Unit="mm" Type="double"> 
         <Value> 0.04 </Value> 
      </Component> 
</ApplicationData> 
The latter alternative does use much, much more space in a file - but then it is infinitely more 
informative. 

5.2.5 Organising a data set with EML 
 
The few and quite simple EML features discussed in section 5 can be used to organise rather 
complex data sets in an EDI file. In a data set, data are related. As an example, a far field will 
consist of many variables each of which describes various features of the field such as 
sampling, frequencies, polarisation, the actual E and H field values etc. In the file all these 
variables reside as Lego blocks. How can they be kept together such that the whole field 
appears as a unity to a tool that reads the file? The observant reader will know the answer: 
using component and domain references.  
 
The design and organisation of the elements of the data set is determined by the data 
dictionary. When it has been determined which data are kept as attributes and variables, the 
easy solution is to make containers which link the data together. There will always be one 
main (root) container variable that will be the entry to the data set giving component 
references to many other variables. The class of this container will be the agreed upon class 
of the data set e.g. Field:Far. The container will have some mandatory component references 
and some optional – the later will only be used by some tools. This will all be laid down in 
the data dictionary. Other containers may then be needed on a second level to organise other 
groups of variables. The principle is shown in figure 5.2. 
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Figure 5.2 - Organisation of a data set using containers (MyDS_Root and MyDS_VAR2) 
 
Besides the component references there will typically also be a need for domain references 
which at the same time link variables together and tells which variables depends on which.  
Finally, we note that different data sets may share various features e.g. a set of currents and a 
near field may reference the same frequency variable. 
 

5.2.6 Advanced data structuring 
 
As already mentioned in Section 4.5, EML offers the elements to build data sets that are 
much more complex than those discussed so far. In particular, it offers the possibility to 
assign dimensions to components, i.e. to state that each element of a component is constituted 
by an n-dimensional matrix of elements. This feature makes it easy to store vector and tensor 
quantities. Furthermore components can be nested, i.e. a component can be a container for 
other components of lower level. In this way it easy to build tree-like data structures, similar 
to the derived types available in many programming languages (e.g. struct in C/C++, 
TYPE in FORTRAN90, record in Pascal). Links among these elements can be created in 
various ways so as to capture the full complexity of tree- and network-like data structures. 
 
These advanced topics are not discussed in this introductory presentation to avoid 
overloading it. The interested reader is addressed to the EDI manuals, until the matter will be 
covered by further EDX manuals. 

5.2.7 EML syntax in Extended Backus-Naur Form  
 
Here we will insert the real EBNF for EML later.  
 
{<Folder Name="…" ID=(integer>=0)1> 
 {<Variable Name="…" [Class="…"] ID=(integer>0)> 
  {<Attribute Name="…">string</Attribute> }* 
  <Sizes>[comma separated list of integers>0]</Sizes> 
  ( 
   { <Component Reference="…"/> }* 
  | 
   [{<Domain Reference="…"/> }*] 
   {<Component Name="…" Type="…"> 
     [<Value>…</Value>] 
    </Component>2}+ 
  ) 
 </Variable> }* 
</Folder> }+ 
 
 

                                                 
1  ID numbers are unique across the entire Declarations section. The first folder has ID=0 and therefore ID of 

variables will start at 1. 
2  ID numbers are unique across the entire Declarations section. The first folder has ID=0 and therefore ID of 

variables will start at 1. 
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6. Electromagnetic Data Interface 
 

6.1 Outline of the EDI 
 
A file written using the EML language is quite simple to understand, still it would take a lot 
of effort to program the functions to read and write it. Clearly a library including the 
functions required for a rapid and easy creations and manipulation of EML data files offers 
many advantages to antenna engineers, researchers and EM software developers. Further, 
once an interface is agreed, the underlying implementation can be extended, updated and 
maintained without changes in the software that utilizes the library. The Library developed 
for this purpose is the Electromagnetic Data Interface (EDI) which can be called from 
software implemented in C++, Fortran90 and Matlab running on various Windows and Linux 
platforms [14,15,16,17]. 
 
EDI is composed of three layers offering increasingly higher levels of functionality. The first 
level, EDI Toolkit, offers all the basic functionality required to access XML files compliant to 
the EML grammar described in section 5. EDI Toolkit functions are the library’s private i.e. 
they can’t be used by a developer. This level will thus not be discussed further here.               . 
EDI Level 0 offers a set of functions to open and close an EDI file. Once opened, there are 
functions to read, write and query EML <Variables>, element by element, and to access the 
information contained in the Header and Application Data sections. EDI Level 1 includes 
functions for data manipulation such as data selection (slicing, sorting, extracting), 
permutation of matrix indices and incremental variable manipulation, including update, 
insert, overwrite, append and resize. 
 
The library is designed to allow the use of other low-level formats besides EML. In 
particular, high-performance standards, like NetCDF and HDF5, are expected to become 
available in the future, without having to change the implementation of tools using EDX i.e. 
the interface to EDI functions will not be changed. 
 
The services provided by EDI Level 0 and 1 are accessed via an application programming 
interface consisting of about 100 functions. Most of them perform the same kind of operation 
(read, write, and query) on different types of numerical data (integer, real, complex…), 
therefore the number of truly different operations is much smaller. Yet, EDI is not really 
immediate to master. Properly written access functions to handle a complete data set require 
quite a number of function calls and checks which are relevant to the relations among 
different variables and need to be programmed by the user. 
 
To simplify this task, EDI Level 2 offers a very simple way to access complete data sets, e.g. 
all data associated with a Field can be read or written with a single call. The price to be paid 
for such extreme simplicity is stiffness; data can only be accessed following a predetermined 
pattern. Two more alternatives have been devised to offer increased flexibility at the price of 
a little more complexity: the EDX Handler and the EDX Translator. They are very different 
from each other and from EDI Level 2, but they both rest on the Level 0 and 1 functions. 
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The present document is written for the EM engineer or scientist whit a reasonable 
programming experience and therefore all 3 levels will be discussed here. 
 
Finally, it must be noted, that the present EDI doesn’t include any features for channels IO. 
The EDI library manages data contained in disk files and this is what will be assumed for the 
rest of this document. Second, there is only room to introduce the most important features. 
The reader is referred to the EDI users manuals [14,15,16,17] for a complete discussion of the 
library. 
 
The present section shall not repeat the users manuals, which are quite thorough. In stead the 
main functions are presented. Details will only be discussed when adequate as a supplement 
to the manuals. Since there is only a Fortran API for the EDI Levels 0 and 1 the following 
sections will be based on this API. 
 
The EDI Fortran API functions are organised as follows: 

• File functions  
• Header functions 
• Declaration functions 
• Data IO functions 

o Normal put and get functions 
o Direct access functions 
o Data IO with Domain reordering 
o Advanced Level 1 functions 

• Application data access 
 
Clearly a <Variable> must be declared before it can be manipulated. Otherwise, the four 
main sections can be accessed in any order that may fit a specific tool because the EDI will 
store the information in its own data structures. 
  

6.2 EDI Level 0: Basic functions. 

6.2.1 File functions 
 
The three functions for managing the files are for opening, closing and asking if an EDI file 
exists. In Fortran77/90 the functions are called  
 

• EDI_FILE_OPEN,   
• EDI_FILE_CLOSE and  
• EDI_FILE_EXISTS. 

  
In the users manual you will note that the actual file name (or path) is only used as input 
when the file is opened or if an existence check is made. As soon a the file is open, all other 
function have an opaque integer “EDI file identifier” (file_id) argument which indicates 
the EDI file to use. 
  
The open function has a status argument ‘status’ which must be equal to ‘new’, ‘old’ or 
‘unknown’. The latter input can be used when an EDI shall be opened without knowing if it 
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already exists. The EDI_FILE_EXISTS  will check both if the file exists and if it is an EDI 
file. 

6.2.2 The header functions 
 
EDI is equipped with a complete set of functions for manipulating specially all the elements 
in the header (see section 5.2.1) i.e. relevant put and query the values of these elements: 
 

• EDI_HEAD_QUERY_STAMP  
• EDI_HEAD_PUT_STAMP_FORMAT 
• EDI_HEAD_QUERY_ORIG_TOOL 
• EDI_HEAD_PUT_ORIG_TOOL 
• EDI_HEAD_QUERY_ORIG_INFO 
• EDI_HEAD_PUT_ORIG_INFO 
• EDI_HEAD_QUERY_TEXT 
• EDI_HEAD_PUT_TEXT 
• EDI_HEAD_REMOVE_TEXT 

 
The use of these functions is straight forward with one exception: The function 
EDI_HEAD_PUT_TEXT has an array of strings as input which are the strings to put in the 
<UserText> element in the header. It also has a logical (Boolean) input array argument 
named text_type of the same length as the string array which is a little peculiar. It 
determines whether each string for the <UserText> element shall be appended in a <Line> 
element or “as is”. Hence if string(1) = ‘Mytext1’, string(2) = ‘Mytext2’ and string(3) = 
‘Mytext3’ and if text_type(1) =.FALSE., text_type(1) =.TRUE. and text_type(1) =.FALSE., 
then the <UserText> element in the file appears as: 
 

<UserText>Mytext1<Line>Mytext2</Line>Mytext3</UserText> 
 
i.e. ‘Mystext2’ is in a <Line> element. 

6.2.3 Managing <Variable>s in <Declarations>. 
 
Besides the <Header>, the rest of the file will contain a set of <Variables> that hold the 
actual data (plus optionally an <Application> element). Before any <Variables> can be used 
they must exist. If the data set has been input from a file, there will already be a set of 
<Variable>s which the program will want to know all about. If, on the other hand, the data is 
going to be saved in a file, the necessary <Variable>s must be created and organised. The 
EDI has an extensive set of functions for such managing of the <Declaration> element. 
Basically there are three main groups of functions. 1) Output: Create <Variable>s with 
various features for a data set which is going to be saved in a file or 2) Input: When an EDI 
file has been opened these functions can be used to inspect (query) the <Variable>s in the 
file. 3) Besides these two important groups, some functions are made for updating a set of 
<Variable>s that has either been input or created. 
 
The complete list of functions is listed in tables 6.1, 6.2 and 6.3.  
 
 
 

 32 



An introduction to the Electromagnetic Data Exchange language 
 

Table 6.1 
Functions used at INPUT Purpose 
EDI_VAR_QUERY Asks if an EDI variable exists and gets information about it - 

not including domains 
EDI_VAR_QUERY_DOMAINS Asks if an EDI variable exists and gets information about it - 

including domains 
EDI_VAR_LIST Gets the list of existing EDI variables in the EDI file 
EDI_VAR_CHECK_SIZES Checks if each size of a dependent variable is equal to size 

of the respective independent variables 
EDI_VAR_EXIST_DOMAIN Checks whether an EDI variable has a domain with given 

name 
EDI_VAR_QUERY_CLASS Retrieves the class of an EDI variable 
EDI_VAR_QUERY_ATTR Retrieves the value of a single attribute 
EDI_VAR_QUERY_ATTRS Retrieves the names and values of all attributes 
EDI_VAR_QUERY_COMPO-
NENTS 

Retrieves the number, names and types of one or more 
components defined in an EDI variable 

EDI_VAR_QUERY_REFS Retrieves the references of all the components defined in an 
EDI variable 

 
Table 6.2 
Functions used at OUTPUT Purpose 
EDI_VAR_PUT Declares an EDI variable (creating it if needed) – including 

rank and sizes but excluding domains. 
EDI_VAR_PUT_DOMAINS Declares an EDI variable (creating it if needed) - including 

rank, sizes and domains 
EDI_VAR_PUT_CLASS Declares the class of an EDI variable 
EDI_VAR_PUT_ATTR Declares a single attribute (name and value) in an EDI 

variable 
EDI_VAR_PUT_ATTRS Declares attributes (names and values) in an EDI variable 
EDI_VAR_PUT_COMPO-
NENTS 

Declares the number, names and types of one or more 
components in an EDI variable 

EDI_VAR_PUT_REFS Declares of one or more reference components in an EDI 
variable 

 
Table 6.3 
Functions used at UPDATE Purpose 
EDI_VAR_REMOVE Removes one or more EDI variables from the EDI file 
EDI_VAR_RENAME Renames an EDI variable 
EDI_VAR_ADD_DOMAIN Inserts one domain and its size in an EDI Variable 
EDI_VAR_REMOVE_DOMAIN Removes one domain and its size by an EDI Variable 
EDI_VAR_RENAME_DOMAIN Renames a domain defined in an EDI variable 
EDI_VAR_REMOVE_ATTRS Removes one or more attributes from an EDI variable 
EDI_VAR_RENAME_ATTR Renames an attribute defined in an EDI variable 
 
In the following sections the most important functions will be discussed including 
experiences obtained so far. The discussion will not present a complete interface - the reader 
is referred to the EDI user manuals for this information. 
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6.2.4 Output – creating variables and saving data in EDI files 

6.2.4.1 Creating an EDI variable with class and domain specification 
 
Variables are needed when a data set shall be output from to an EDI file. A <Variable> can 
be created in two ways: 
 

• If the variable is independent it can be declared with the function EDI_VAR_PUT 
which simply creates the variable in an EDI file telling its name, rank and  <Sizes>. 

• If the variable is dependent, the function EDI_VAR_PUT_DOMAINS can be used. 
This function has the same arguments plus arguments that specifies the names of the 
domain i.e. a list of other variables in the file on which the present variable depends. 
Note, there is no check of consistency i.e. if the domain variables actually exists – it is 
up to the developer to ensure that all referenced variables exists when the file is 
closed. A dependent variable can also be created using first EDI_VAR_PUT and then 
later EDI_VAR_PUT_DOMAINS – this may be adequate in some situations. (Note 
that a dependent variable may also be created first using EDI_VAR_PUT and the 
domain specification may then be added later with EDI_VAR_PUT_DOMAINS.) 

 
The call of function EDI_VAR_PUT_DOMAINS is quite characteristic for the EDI interface 
design: 
 ier = EDI_VAR_PUT_DOMAINS(file_id, name, rank, sizes,  

                        dom_n, doms, dom_len) 
 

The integer file_id is always there as the first argument followed by the name of the variable 
(a string – in FORTRAN77/90 declared as CHARACTER(LEN=xx) where xx is the required 
length). Next rank and sizes information follows and the some data – in this case no. of 
domains, their names (an array of strings with names of other variables) and the length of 
those names. Rank and sizes are defined in the usual way e.g. a matrix with 4 rows and 15 
columns is rank 2 with <Sizes> 4 15 </Sizes>.  Note, that domains can be specified without 
the existence of the domain variables – it is up to the developer to ensure consistency i.e. to 
add these variables before the EDI file is closed. Also note that the number of domains need 
not equal the rank (a rather peculiar situation which will rarely appear in practice). 
 
As soon as a variable has been created its class should be declared as discussed in section 5 
and according to a Data Dictionary. The class is easily added with  
 
 ier = EDI_VAR_PUT_CLASS(file_id, name, class) 
 
where class is a CAHARACTER variable. 
 
Example 5.1: Assume that we want an EDI Variable for a double complex array with a 
logical flag for each element in the array. The variable shall be named XXX3D_GridValues of 
the imaginary class FlaggedComplexValuesIn3DGrid which in an imaginary Data Dictionary 
depends on the 1D arrays (vectors) X,Y and Z in that order. Assume the integer file_id has 
been assigned a value when the EDI file was opened, that the integer IER has been declared 
and that the required sizes reside in the integer NX, NY and NZ: 
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   INTEGER :: RANK, SIZES(3) ! Obviously rank and sizes 
   INTEGER :: DOM_N          ! No. of domains 
   INTEGER :: DOM_LENS(3)    ! Length of domain names 
   CHARACTER(LEN=20) VAR_NAME 
   CHARACTER(LEN=30) CLASS_NAME 
   CHARACTER(LEN=20) DOMAINS(1:3) 
      ……… 
      ! Create EDI variable and set its class 
      DOMAINS(1) = ’X’; DOMAINS(2) = ’Y’; DOMAINS(3) = ’Z’ 
      RANK = 3; DOM_N = 3; DOM_LENS = LEN_TRIM(DOMAINS) 
      SIZES(1) = NX ; SIZES(2) = NY ; SIZES(3) = NZ 
      VAR_NAME = ‘Our3D_GridValues’ 
      IER = EDI_VAR_PUT_DOMAINS(FILE_ID, TRIM(VAR_NAME), RANK, &  
                       SIZES,DOM_N, DOMS, DOM_LEN) 
      IF (IER/=0) GOTO 999 ! Some error reaction at 999 
      CLASS_NAME = ‘FlaggedComplexValuesIn3DGrid’ 
      IER = EDI_VAR_PUT_CLASS(FILE_ID, TRIM(VAR_NAME), & 
                              TRIM(CLASS_NAME)) 
      IF (IER/=0) GOTO 999 ! Some error reaction at 999 
      ……… 
 
Example 5.1 is continued below. 
 
Important remark for FORTRAN90 developers
When a variable name is input to an EDI functions – no matter whether it is the ‘name’ or if it 
is domain names - there are still some problems with some of the FORTRAN90 functions in 
how the underlying C++ function gets the data. Not all of these problems has apparently been 
resolved and an error may be issued from the EDI function or a runtime error may occur. In a 
given situation the problem can be solved in one of the following ways: 
 

1) In very rare cases one may call the function with the variable name as a character 
constant e.g. ‘My_FarField’ – it always works.  

2) In the majority of cases, however, the argument will be a variable, and in this case 
always trim the variable in the call. If the variable is called VAR_NAME then call the 
function with TRIM(VAR_NAME)  - this usually works.  

3) In some cases, however, one may need the length without trailing blanks i.e. set  L_V 
= LEN_TRIM(VAR_NAME) – then call the function with VAR_NAME(1:L_V).  

4) In very rare cases none of these option works correctly, and in such cases one can try 
to copy the trimmed variable name into another character variables and add the null 
character as last significant character and then call the function with the other variable 
as argument: V_NAM = LEN_TRIM(VAR_NAME)//CHAR(0) (the CHAR(0) is the 
string terminator in C/C++ also known as ‘\n’). This tiresome work around usually 
succeeds when options 2) or 3) fails. One should, however, try 2) first because the 
code get rather long if 4) is used every time an EDI function is called. 

 
As and example of a combination of 3) and 4) consider the following block of FORTRAN90 
statements (we get back to the function EDI_VAR_SET_DOUBLES later – the important 
issue here is the VAR_NAME argument): 
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      IER = EDI_VAR_SET_DOUBLES(FILE_ID, TRIM(VAR_NAME), I, RANK, & 
                                V_START, V_COUNT, DOUBLES) 
      IF (IER<0) THEN 
         L1 = LEN_TRIM(VAR_NAME)+1 
         V_NAM = TRIM(VAR_NAME)//CHAR(0) 
         IER = EDI_VAR_SET_DOUBLES(FILE_ID, V_NAM(1:L1), I, RANK, & 
                                   V_START, V_COUNT, DOUBLES) 
      ENDIF 
 
Here first an attempt with trim is made and if it fails, the function is called again with the 
actual argument V_VAM which equals VAR_NAME without trailing blanks concatenated 
with a CHAR(0) as the last character. 

6.2.4.2 Adding features to a <Variable> for data 
 
When a variable for has been created a number of functions can be used to shape it for the 
specific use. As explained in section 5 there are two main types of <Variable>s: 1) The 
“normal” type for actual data values and 2) the container that binds a data set together using 
references.  
 
Besides rank, sizes and domains which are discussed above, the features for the normal 
<Variable> are the attributes and the components.  
 
The most important declaration is the components. A <Variable> may have any number of 
components of one of the available EDI types as shown in table 6.4. The components are 
declared with function EDI_VAR_PUT_COMPONENTS. All components have the same 
shape i.e. their rank and sizes are those of the variable (the introduction of structures will 
remove third limitation. Such developer-defined data types are not available and are not 
planned to be implemented as static data-typing – the only needed for data exchange – can 
achieve the same goal by simply nesting component definitions. Each component can be 
named. This feature is used if a variable has more components. 
 
  Table 6.4 
Fortran Type EDI symbol Description 
 EDI_TYPE_VOID 0 bit 
INTEGER EDI_TYPE_INT 32 bit integer (sign is handled by the 

application, not by EDI) 
CHARACTER*1 EDI_TYPE_CHAR 8 bit character 
LOGICAL EDI_TYPE_BOOL 1 bit logical (8 bit of memory) 
CHARACTER*(*) EDI_TYPE_STRING arbitrary-length sequence of 8 bit 

characters 
REAL EDI_TYPE_REAL 32 bit IEEE floating-point real 
REAL*8 EDI_TYPE_DOUBLE 64 bit IEEE floating-point real 
COMPLEX EDI_TYPE_COMPLEX 64 bit complex (pair of REALs) 
COMPLEX*16 EDI_TYPE_DCOMPLEX 128 bit complex (pair of DOUBLEs) 
 
The function used to specify the components is: 
 
    ier = EDI_VAR_PUT_COMPONENTS(file_id, name, count, & 
                                 comp_names, comp_len, edi_types) 
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Where count is the number of components, comp_names is a CHARACTER array with count 
elements holding the names of the components and comp_len an array with the length of the 
names. Finally, edi_types is an integer array (with count elements) that specifies their type. 
 
All attribute values are treated as character strings. Hence a numeric value must be converted 
from characters to numbers by the tool. The attributes are easy to add using the functions 
EDI_VAR_PUT_ATTR (one) and EDI_VAR_PUT_ATTRS (several at the same time):  
 
    ier = EDI_VAR_PUT_ATTRS(file_id, name, count, attr_names, 
                            attr_nlens, attr_vals, attr_vlens) 
 
Count tells the number of attributes in the character array attr_names and then length of these 
names must recide in attr_nlens. Similarly, the corresponding values must be in attr_vals and 
the length of these must be in attr_vlens. 
 
Example 5.1 continued: In the example two components are need – one for the complex 
values which we call ‘OurCmplxCmp’ and one for the logicals called ‘Flag’. Further, the 
attributes OurAttib1 and OurAttrib2 must be added with the values ‘Rotated’ and ‘Blue’:  
 
   INTEGER :: COUNT 
   INTEGER :: COMP_LENS(1:2)     ! Length of attribute names 
   INTEGER :: COMPTYPES(1:2)     ! For component type specs. 
   INTEGER :: ATTR_LENS(1:2)     ! Length of attribute names 
   INTEGER :: ATTV_LENS(1:2)     ! Length of attribute values 
   CHARACTER(LEN=10) COMPONENTS(1:2) 
   CHARACTER(LEN=20) ATTIRIBUTES(1:2) 
   CHARACTER(LEN=20) ATTRIB_VALS(1:2) 
      ……… 
 
      ! Specify components 
      COUNT = 2; 
      COMPONENTS(1) = ‘OurCmplxCmp’; COMPONENTS(2) = ’Flag’ 
      COMP_LENS = LEN_TRIM(COMPONENTS) 
      COMPTYPES(1) = EDI_TYPE_DCOMPLEX 
      COMPTYPES(2) = EDI_TYPE_BOOL 
      IER = EDI_VAR_PUT_COMPONENTS(FILE_ID, TRIM(VAR_NAME), COUNT, & 
                                   COMPONENTS, COMP_LENS, COMPTYPES) 
      IF (IER/=0) GOTO 999 ! Some error reaction at 999 
 
      ! Specify attributes 
      ATTIRIBUTES(1) = ‘OurAttrib1’; ATTIRIBUTES(2) = ’OurAttrib2’ 
      ATTRIB_VALS(1) = ‘Rotated’; ATTRIB_VALS(2) = ‘Blue’ 
      ATTR_LENS = LEN_TRIM(ATTIRIBUTES) 
      ATTV_LENS = LEN_TRIM(ATTRIB_VALS) 
      IER = EDI_VAR_PUT_ ATTRS(FILE _ID, TRIM(VAR_NAME), COUNT, & 
                               ATTIRIBUTES, ATTR_LENS,          & 
                               ATTRIB_VALS, ATTV_LENS) 
      IF (IER/=0) GOTO 999 ! Some error reaction at 999 
      ……… 
 
Example 5.1 is continued below. 
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Assuming that NX=100, NY=100 and NZ=5, the statements in example 5.1 yield the 
following EDI <Variable> declaration in the file: 
 
<Variable Name="Our3D_GridValues"  
          Class="FlaggedComplexValuesIn3DGrid" ID="8"> 
  <Attribute Name="OurAttrib1">Rotated</Attribute>      
  <Attribute Name="OurAttrib2">Blue</Attribute> 
  <Sizes>5 100 100</Sizes>                                                    
  <Domain Reference="Z"/>                             
  <Domain Reference="Y"/>                                              
  <Domain Reference="X"/>                                            
  <Component Name= "OurCmplxCmp" Type="dcomplex"/> 
  <Component Name= "Flag" Type="boolean"/> 
</Variable> 

6.2.4.3 Making a container 
 
A container variable has zero sizes and no domains. Further, it has component references 
pointing at other variables. It is made quite simple using the function  
 
      ier = EDI_VAR_PUT_REFS(file_id, name, count, & 
                                 ref_names, ref_len) 
 
where count is the number of component references, ref_names is a CHARACTER array 
with the names of the referenced variables and ref_lens the length of these names. 
 
Example 5.1 continued: 
   INTEGER :: RANK, SIZES(3) ! Obviously rank and sizes 
   INTEGER :: N_REFS         ! No. of ref. components 
   INTEGER :: REF_LENS(3)    ! Length of domain names 
   CHARACTER(LEN=20) VAR_NAME 
   CHARACTER(LEN=30) CLASS_NAME 
   CHARACTER(LEN=20) REFERENCES(1:3) 
      ……… 
      ! Create a container 
      RANK = 0; SIZES = 0 ! SIZES not used but must be present 
      VAR_NAME = ‘Our_Container’ 
      IER = EDI_VAR_PUT(FILE_ID, TRIM(VAR_NAME), RANK, SIZES) 
      IF (IER/=0) GOTO 999 ! Some error reaction at 999 
      CLASS_NAME = ‘OurContainerClass1’ 
      IER = EDI_VAR_PUT_CLASS(FILE_ID, TRIM(VAR_NAME), & 
                              TRIM(CLASS_NAME)) 
      IF (IER/=0) GOTO 999 ! Some error reaction at 999 
      REFERENCES(1) = ’X’; REFERENCES(2) = ’Y’; REFERENCES(3) = ’Z’ 
      N_REFS = 3; REF_LENS = LEN_TRIM(REFERENCES) 
      IER = EDI_VAR_PUT_REFS(FILE_ID, TRIM(VAR_NAME), N_REFS, & 
           REFERENCES, REF_LEN) 
      IF (IER/=0) GOTO 999 ! Some error reaction at 999 
      ……… 
      ! Set its attributes 
      ……… 
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As indicated above, a container can of course also have attributes. Finally, an EDI variable 
may have both its own components based on domains and component references. This quite 
powerful combination has not been used by the authors but it clearly enables the 
representation some rather complex data sets. 

6.2.4.4 Making a simple variable 
 
In some cases simple variables are needed e.g. as a logical (Boolean) flag. In EDI simple 
variables  are created with EDI_VAR_PUT where rank equals zero. Then the class must be 
declared with EDI_VAR_PUT_CLASS and a single unnamed component is declared with 
EDI_VAR_PUT_COMPONENTS – the type can be any of the already mentioned EDI-types. 
The variable value can now be set and saved as discussed in section 6.2.4.5. 

6.2.4.5 Transparent IO 
 
Before the functions for saving a <Variable> is introduced, a short discussion about the 
transparency of input and output is helpful.  
 
Output: During the calculations in the software tool that utilises the EDI, the tool will of 
course use a number of data structures e.g. arrays for saving intermediate and final results. 
When data are ready to be saved the relevant EDI PUT function is called with an array with 
the results as actual input argument. The EDI function will copy the data to the library’s own 
internal data structure and the tools array is free and can be used again or de-allocated. 
Basically one can consider the PUT operation as a traditional files write statement i.e. when 
performed, the toll can consider the data as saved.  
The actual save to file operation is managed by the EDI Library and the developer need not 
consider any details. The time and method of output implemented in the EDI may even be 
changed in future versions. The only thing to remember is that the EDI_FILE_CLOSE 
function must be called before another program can access the file (e.g. a post processor). 
 
Input: The EDI load data from the file into its own data structures at a time which can’t be 
controlled by the software tool, and again the time and method is of no importance to the 
tool. When the relevant GET function is called, the EDI will ensure that the required data can 
be retrieved from the file and become available in the tools own arrays.  
Further, since declarations functions (see below) can return all information about a 
<Variable> including it’s <Sizes> one may preferably use dynamic allocation by first asking 
for <Sizes>, allocate and then GET the data. In this way the arrays will always have the 
correct sizes for the data from the file.  

6.2.4.6 Saving values in an EDI <Variable>. 
 
When a variable that has been declared as explained above the tool can SET the variable, i.e. 
the tool can save data. First, the data will be stored in EDI’s private data structure. The data 
will then be saved in the file when EDI_FILE_CLOSE is called. There are two sets of SET 
functions – one for scalar variables and one for arrays. The functions are: 
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Table 6.5 
SET scalar EDI variable SET array EDI variable 
EDI_VAR_SET_INT      EDI_VAR_SET_INTS       
EDI_VAR_SET_BOOL     EDI_VAR_SET_BOOLS      
EDI_VAR_SET_CHAR     EDI_VAR_SET_CHARS      
EDI_VAR_SET_REAL     EDI_VAR_SET_REALS      
EDI_VAR_SET_DOUBLE   EDI_VAR_SET_DOUBLES    
EDI_VAR_SET_COMPLEX  EDI_VAR_SET_COMPLEXES  
EDI_VAR_SET_DCOMPLEX EDI_VAR_SET_DCOMPLEXES
EDI_VAR_SET_STRING   EDI_VAR_SET_STRINGS    
 
 
They all look alike - except for the variables for EDI_TYPE_STRING (the reader is referred 
to [14] for details on EDI_STRINGS). Here we show the interface to the 
EDI_VAR_SET_INTS for setting an EDI integer array variable. This function sets or 
changes all or a part of the INTEGER values of an EDI variable. 
 
 ier = EDI_VAR_SET_INTS(file_id, name, comp, rank, 
                           vstart, vcount, vals) 
where 
 
ier:  Returned value. It is equal to an integer >= 0 if the operation is 

successful, otherwise < 0. 
file_id (IN):  Integer that contains the EDI file identifier. 
name (IN):  String that contains the variable’s name. 
comp (IN): Integer that contains the index of the component to use. 
rank (IN): Integer that must contain the variable’s rank. 
vstart (IN): Integers array, with length equal to rank, that contains the start indices 

(one for each dimension). 
vcount (IN): Integers array, with length equal to rank, that contains the number of 

values to set or change (for each dimension). 
vals (IN): INTEGERS array that contains the values to set. 
 
As discussed above, a variable can have several components. The comp argument points out 
which component is set in the present call and its type must of course be consistent with the 
SET function which is called i.e. in this case it must be an integer component. Next, note that 
the function is designed such that one can set the whole array or a sub-array using vstart 
and vcount. 
 
The most “sensible” input is the vals argument. Note, that there is no specific description of 
the declared shape and size of vals. Hence vals can be an integer array declared to have 
any dimension what so ever and with any sizes. All that is transferred to the SET function is 
the start address of the array. All the values to be transferred are then assumed to be in the 
following vcount(1) × vcount(2) × ... × vcount(rank) places in the memory. 
 
Assume that rank, vstart, vcount and vals has been declared as follows: 
 
   INTEGER :: RANK, VSTART(1:2), VCOUNT(1:2) 
   INTEGER :: VALS(1:7,1:5) 
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   …… 
   RANK = 2 
   VSTART(1) = 1; VSTART(2) = 1 
   VCOUNT(1) = 7; VCOUNT(2) = 5 
   …… 
   ! Assignment values to integer array vals  

 
In this case there will be no problem – all sizes fits and the values that has been put into vals 
will be saved as intended. If,  however,  only the first 5 rows are used (e.g. the array is reused 
for a smaller integer matrix later) we have a problem, since FORTRAN90 stores data column 
wise as shown in figure 6.1 -   
 

Declared 7 by 5 array
- only first 5 rows used

In memory – unused rows appear as 
“wholes” with undetermined data

Start of 
array

Declared 7 by 5 array
- only first 5 rows used

In memory – unused rows appear as 
“wholes” with undetermined data

Start of 
array

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1: FORTRAN90 actual storage of 2D static array in memory 
 
 
The same situation appear for static arrays in C/C++ but now with columns since data are 
stored row wise in memory. The easiest way to avoid the above problems in to use dynamic 
arrays and allocate exactly what is needed before a SET function is called (C/C++ developers 
do this but many FORTRAN90 developers tend to use static arrays).  
 
Further details about the various functions in section 6.2.4 can be found in [14].   
 

6.2.5 Input of data from EDI files 

6.2.5.1 Obtaining information about EDI variables 
 
When an EDI file has been opened, a software tool needs to know if the content of the file is 
as expected (i.e. if a far field is read) the tool needs to know if all the required variables are 
present. There may be many other data in the file but this is of no importance here – the tool 
will only load the data it needs. 
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The first thing always is to get a list of the EDI variables in the file – this is obtained with the 
important function 
 
   ier = EDI_VAR_LIST(file_id, count, names, name_len, reqlen) 
 
The count argument tells the function the length of the names string array at call. Quite 
obviously the function returns the number of variables in the file in count, and the names of 
the variables. The names array should be declared dynamically e.g. to 20 names. If this is too 
short then ier>0 and count>20 at return and it is easy to re-allocate the array to the correct 
size and call the function again. 
 
When the names have been found one can start to examine all the other features of the file. 
For this purpose there is a number of EDI functions as listed in table 6.6. First, the tool will 
need to locate the data set root containers. 
 
Table 6.6 
Functions used at INPUT Purpose 
EDI_VAR_QUERY Asks if an EDI variable exists and gets information about it - 

not including domains 
EDI_VAR_QUERY_DOMAINS Asks if an EDI variable exists and gets information about it - 

including domains 
EDI_VAR_LIST Gets the list of existing EDI variables in the EDI file 
EDI_VAR_CHECK_SIZES Checks if each size of a dependent variable is equal to size 

of the respective independent variables 
EDI_VAR_EXIST_DOMAIN Checks whether an EDI variable has a domain with given 

name 
EDI_VAR_QUERY_CLASS Retrieves the class of an EDI variable 
EDI_VAR_QUERY_ATTR Retrieves the value of a single attribute 
EDI_VAR_QUERY_ATTRS Retrieves the names and values of all attributes 
EDI_VAR_QUERY_COMPO-
NENTS 

Retrieves the number, names and types of one or more 
components defined in an EDI variable 

EDI_VAR_QUERY_REFS Retrieves the references of all the components defined in an 
EDI variable 

 
First, the tool will need to locate all root containers (see section 5.2.5) of the class of the 
variable that represents the data set to be used. Assume all names of variables have been put 
in a list and that we are looking for a far field i.e. we must locate all variables of class 
Field:Far. Further, assume that we will use the first far field located unless a specific name is 
given in which case this field shall be used. This is easy: 
 
   Loop through the variables in the list 
      Fetch the class of the present variable 
      If class equals ‘Field:Far’ then 
         If we are looking for a specific named variable then 
            FOUND= Name of present variable equals name searched for 
         Else 
            FOUND = .TRUE. 
            Remember name of variable 
         If FOUND exit variables loop 
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- or in FORTRAN90 – as a general function that may look for variables of a specific class: 
 
FUNCTION LOCATE_VAR_OF_CLASS(EDI_FILE, COUNT, NAMES,  
                             CLASS, VAR_NAME) 
    
   ! IF VAR_NAME non-blank, look for variable with that name 
   ! of class CLASS in EDI_FILE. 
   ! IF VAR_NAME is blank at call, return first EDI variable 
   ! of class CLASS found in EDI file and its name in VAR_NAME. 
   ! The file must be opened. All names of EDI variables in  
   ! the file must be in the names array NAMES at call. 
   ! Function value is 0 if a variable is found, Otherwise false. 
 
   INTEGER, INTENT(IN) :: EDI_FILE 
   INTEGER, INTENT(IN) :: COUNT 
   CHARACTER(LEN=MAX_NAME_LENGHT), INTENT(IN) :: NAMES(1: COUNT) 
   CHARACTER(LEN=MAX_NAME_LENGHT), INTENT(IN) :: CLASS 
   CHARACTER(LEN=MAX_NAME_LENGHT), INTENT(INOUT) :: VAR_NAME 
   INTEGER :: LOCATE_VAR_OF_CLASS ! Function value 
 
   ! Locals 
   INTEGER :: I, IER, CLASS_LEN 
   LOGICAL :: FOUND 
   CHARACTER(LEN=MAX_NAME_LENGHT) :: VAR_CLASS 
  
      LOCATE_VAR_OF_CLASS = 0 ! Assume success  
      DO I=1, COUNT 
         IER = EDI_VAR_QUERY_CLASS(EDI_FILE, TRIM(NAMES(I)), & 
                                   VAR_CLASS, CLASS_LEN) 
         IF (IER/=0) GOTO 10 ! Exit if problems (my be refined!) 
         IF (VAR_CLASS == CLASS) THEN 
            IF (VAR_NAME/=’ ‘) THEN 
               FOUND = VAR_NAME == NAMES(I) 
            ELSE 
               FOUND = .TRUE. 
               VAR_NAME = NAMES(I) 
            ENDIF 
            IF (FOUND) GOTO 999 ! Exit the DO loop 
         ENDIF 
      ENDDO 
      ! We end up here if no variable of CLASS. 
 
      10 CONTINUE 
      LOCATE_VAR_OF_CLASS = -1 
 
   999 RETURN 
END FUNCTION LOCATE_VAR_OF_CLASS 
    
When the entry container has been located all sorts of checks and cross-checks can easily be 
made using the functions listed in table 6.6 and the consistency of the data set can be verified. 
Cross-checks include  
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• Does all directly of indirectly referenced variables exist (this check can be made with 
a recursive function starting with the entry container and working down through 
references). 

• Are the sizes of an EDI variable with domains consistent with the sizes of its domain 
variables. The EDI function EDI_VAR_CHECK_SIZES can be used for this check.  

• Are all mandatory attributes of an EDI variable present and are their values as 
expected. 

 
The general rule should be that the input module which fetches data from the EDI file checks 
the validity and consistency of a variables features before the actual data are fetched. 

6.2.5.2 Getting the values of an EDI variable 
 
Following checks, the tool reading the EDI file will need to fetch the values (i.e. the content 
of the <Data>-section) for each of the required variables. Here the GET functions are used: 
 
Table 6.6 
SET scalar EDI variable SET array EDI variable 
EDI_VAR_GET_INT      EDI_VAR_GET_INTS       
EDI_VAR_GET_BOOL     EDI_VAR_GET_BOOLS      
EDI_VAR_GET_CHAR     EDI_VAR_GET_CHARS      
EDI_VAR_GET_REAL     EDI_VAR_GET_REALS      
EDI_VAR_GET_DOUBLE   EDI_VAR_GET_DOUBLES    
EDI_VAR_GET_COMPLEX  EDI_VAR_GET_COMPLEXES  
EDI_VAR_GET_DCOMPLEX EDI_VAR_GET_DCOMPLEXES
EDI_VAR_GET_STRING   EDI_VAR_GET_STRINGS    
 
Once again they are all alike (with the exception of the string handler) – the only thing that 
changes is the type of the VALS array (last argument), which of course changes with the 
specific type of the data to be fetched from the EDI-file:  
 
 ier = EDI_VAR_GET_INTS(file_id, name, comp, rank, 
                                 vstart, vcount, vals) 
where 
ier:  Returned value. It is equal to an integer >= 0 if the values are 

successfully returned, otherwise < 0. 
file_id (IN):  Integer that contains the EDI file identifier. 
name (IN):  String that contains the variable’s name. 
comp (IN): Integer that contains the index of the component to use. 
rank (IN): Integer that must contain the actual number of variable’s dimensions 

(rank). 
vstart (IN): Integers array, with length equal to rank, that contains the start indices 

(one for each dimension). 
vcount (IN): Integers array, with length equal to rank, that contains the number of 

values to retrieve (for each dimension). 
vals (OUT): INTEGERS array that will contain the retrieved values. 
 
The component must of course be of the correct EDI_TYPE i.e. EDI_TYPE_INT in the 
above case.  
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Once again the developer should take care with the array dimensions. The functions return 
vcount(1) × vcount(2) × ... × vcount(rank) values that reside densely in memory.  
Assume the function is called with a static integer array where declared as 7 rows and 5 
columns. Further, assume that vcount(1) = 5 and vcount(2) = 5 and we want to fetch these 25 
values from a rank 2 EDI variable into the array. Then at return the data values reside in the 
array as shown in figure 6.2: 
 

Declared 7 by 5 array Returned values will occupy
the first 25 places in the array 
corresponding to the first 3
columns and 4 top places of 
4th column.

Start of 
array

Declared 7 by 5 array Returned values will occupy
the first 25 places in the array 
corresponding to the first 3
columns and 4 top places of 
4th column.

Start of 
array 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2: FORTRAN90 location of contiguous array elements in memory 
 
Many problems will be avoided if dynamic allocation is used such that the array exactly fits 
with the data to be fetched. In the following example assume that the second component is 
going to be fetched from a rank 3 EDI variable with <SIZES> 17 201 10 </SIZES>, and 
assume that this is a complex: 
 
   ! Declaration of  
   COMPLEX, ALLOCATEBLE :: VALS(:,:,:) 
   ………… 
      VSTART = 1 ! Set all equal to 1 
      VCOUNT(1) = 17; VCOUNT(2) = 201; VCOUNT(1) = 10; 
      RANK = 3; COMP = 2 
      VAR_NAME = ‘My_CmplxField’ 
      IF (ALLOCATED(VALS)) DEALLOCATE(VALS) 
      ALLOCATE(VALS(17,201,10)) 
      IER = EDI_VAR_GET_ COMPLEXES(FILE_ID, TRIM(VAR_NAME), COMP,  
                                   RANK, VSTART, VCOUNT, VALS) 
      ………… 
 

Here, the array VALS fits exactly with the data and the application may address the elements 
accordingly. 
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7.  Final remarks 
 
In this document we have only covered the most fundamental part of the EML language and 
EDI level 0. Much more can be said about the both and a later edition of the present 
document will cover some of the key advanced features of EML and key functions of EDI 
level 1. Until this extension appears the user is referred to the user manuals. 
 
In EML, more options are possible in the declaration of variables, allowing the nesting of 
components, to declare data structured similar to what can be obtained with derived types 
(e.g. struct in C/C++, TYPE in FORTRAN90, record in Pascal). However the 
corresponding EDI functions have been added recently and not used enough by the authors to 
discuss them. 
 
The EDI is a nice interface that has been carefully planned. Further, much of the underlying 
implementation has been tested by a number of ACE and EAML partners and those parts of 
the library perform satisfactory. There are, however, still parts of the library especially in 
level 1 that have only been tested by ITLink. It is hoped that more users will look into and 
test these parts in the near future. 
 
Several proposals for future improvements and if implemented they will be covered in future 
editions of the present document. 
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