

EuCAP 2009 – ARCTIC Workshop

Berlin, 26 March 2009

Advances in Vehicular Antenna Solutions for Mobile Satellite Communication Systems

Daniel Llorens*, Ferdinando Tiezzi*, Stefano Vaccaro*

(*) JAST SA, PSE-C, CH-1015 Lausanne, Switzerland, info@jast.ch

- Review of requirements
- Current solutions available and under development
 - ◆ L/S-band
 - ◆ Ku-band
- Conclusions

Market requests powerful Mobile Satellite Communication Systems

- Broadcast large amount of data for information and entertainment
- Effective broadband communication systems when terrestrial networks are unavailable or inadequate
- High capacity systems (Fwd & RC) to allow high number of users
- Low communications costs

A wide set of System requirements

Unidirectional broadcast/multicast download to a vehicle

- ◆ ADAS (Advanced Driver Assistance System) applications
- Speed Limits
- Traffic Management and Control (TMC)
- Digital Map Updates
- Location Based Services (LBS)

Unidirectional upload from a vehicle

- Map deviation
- Digital Tachograph static data
- Pay per Use insurance
- Vehicle Data
- Road User Charging (RUC)

■ Bidirectional Fat – (asymmetrical: broadband download to the vehicle and a thin return channel)

- e-Call: RESCUE architecture
- Dynamic Personal Navigation
- Remote Vehicle Diagnostics Data exchange
- Fleet & Hazardous Goods Management data direction to vehicle & Routing

■ Bidirectional thin – interactive (symmetrical narrow band data flo

- Hazardous Goods Management Driver warning
- Dynamic Personal Navigation On-Board navigation with real time info
- ◆ ADAS cooperative adas
- Pay per Use insurance fat client system

Systems specifications

- L-band Satellite digital radio broadcasting:
 - Freq: 1.467-1492 GHz
 - Pol: dual circular switchable
- L-band bi-directional low data rate (GEO Thuraya or Inmarsat BGAN)
 - Freq: Rx 1.525-1.560 GHz; Tx 1.625-1.660 GHz
 - Pol: LHCP or RHCP
- Positioning/Navigation
 - Freq: Rx 1.575 GHz
 - Pol: RHCP
- L-band bi-directional low data rate (LEO Iridium)
 - Freq: Tx/Rx 1.610-1.626 GHz
 - Pol: RHCP
- S-band bi-directional medium data rate (GEO Solaris)
 - Freq: Rx 2.170-2.200 GHz; Tx 1.980-2.010 GHz
 - Pol: dual circular switchable
- Ku-band bi-directional high data rate (GEO)
 - Freq: Rx 10.70-12.75 GHz; Tx 14.0-14.5 GHz
 - Pol: dual linear switchable with polarization tracking

- Review of requirements
- Current solutions available and under development
 - ◆ L/S-band: European Satellite Digital Radio Antennas (E-SDR)
 - Ku-band
- Conclusions

Dual CP antennas forf European Satellite Digital Radio (E-SDR)

Switchable Dual Circularly polarised antenna

- European Satellite Digital Radio uses L-band spectrum and polarisation diversity to offer up to 50 broadcasting channels with a capacity up to 128 Kb/s per channel
- JAST offers the only antenna products for <u>mobile</u> reception of Digital Satellite Radio.
 - Products are available for car and boat markets

Dual-CP E-SDR antenna patterns and coverages

Antenna typical radiation patterns

AfriStar North-West AfriStar South

AfriStar North-East

AsiaStar North-West

Linear polarized Antenna for E-SDR

- Package size: Diameter = 52 mm, Height = 18 mm
- The diameter can be reduced of 5 to 10 mm with some additional design effort

Gain pattern measured on a 70cm round ground plane

GAIN [dB] - Linear polarisation

E-SDR Antennas - field trials at FIAT Automobile

- Active antenna prototype for the European Satellite Digital Radio (E-SDR) field trials realised in Turin, Italy, in collaboration with Viatis, WorldSpace and Fiat.
- Size: footprint 6x4.5 cm height 3 cm (height can be reduced to less than 2 cm)

- Review of requirements
- Current solutions available and under development
 - ◆ L/S-band: Thuraya-GPS Vehicular Antenna
 - ◆ Ku-band
- Conclusions

Thuraya-GPS Antenna – Radiation pattern

Thuraya = LHCP

Horiziontal cutting plane
Axial ratio at 3 dB

GPS = RHCP

Horiziontal cutting plane

Page 14

- Review of requirements
- Current solutions available and under development
 - ◆ L/S-band: Multi-System Antenna
 - ◆ Ku-band
- Conclusions

WGTI Multisystems antenna – WorldSpace, GPS, Thuraya, Iridium

Applications:

- S-DAB (Satell. Digital Audio Broadcasting, Rx)
- Data Multicasting (Rx)
- Positioning and Navigation
- Voice+Data Communications/ Telemetry (Tx/Rx)
- Market: automotive aftermarket and OEM.
- Systems: WorldSpace, GPS, Thuraya, Iridium (upgradeable with GSM/UMTS)
- Small size: diameter=15 cm; thickness=1.6 cm
- JAST Patented design

WGTI Multisystem antenna – WorldSpace, GPS, Thuraya, Iridium

- Review of requirements
- Current solutions available and under development
 - ◆ L/S-band: Thuraya-GPS Vehicular Antenna
 - ♦ Ku-band: Hybrid steering Array Antenna
- Conclusions

Ku-band Mobile broadcasting

- Robust waveform and coding to reduce blockage effects
- Large capacity available at low-cost
- Simple user terminals with small antennas
- Possible use also outside Europe

Page 19

Ku-band solutions under development

Small hybrid steering Antenna

Hybrid array

Mechanically steered in azimuth and electronically scanned in elevation and polarization.

Fraunhofer Ku-mobile System Overview

- New waveform with Error correction allowing:
 - Mobile reception in variable environment
 - Signal blockages management
 - Use of small low directivity antenna

- Modulator and demodulator available
- Reception possible with very small antennas
- System tested with small hybrid array antenna

APPLICATIONS

- Live Video and Audio streaming
- Push to Store Applications (Podcasts, video-clips, ...)
- Information services
- Support services to Navigation

Ku-Hybrid Array Steering Mechanical Assembly

Active radiating modules

Active steering card

Low-noise down-converter with WG-Coax transition

Ku-Hybrid Array - Detail of Antenna Parts

Active Radiating Cards & Lead-frame

Mounting Radiating Modules on Rx Card

Support & Inclined Radiating Cards

Ku-Hybrid Array – Antenna results

JAST Proprietary & Confidential

- The vehicular Low-profile hybrid array antenna is currently extended to a dual aperture Transmit/Receive
- This solution will allow broadband communications to and from professional/fleet vehicles

- Review of requirements
- Current solutions available and under development
 - ◆ L/S-band: Thuraya-GPS Vehicular Antenna
 - ◆ Ku-band: Fully electronic steerable Array Antenna
- Conclusions

Natalia - Low-Cost Ku-Band terminal

- Small low-cost satellite terminal installed on cars
- Converged mobile TV + data casting services (maps, weather, traffic, POI)
- Low exploitation costs (€bit) thanks to large available broadcasting capacity
- **Personal Installation Kits & OEM directly** integrated systems
- Development funded by **@@@\$3**

Consortium:

Fully active phase array for SES-GLOBAL Ku-Mobile

- Fully active phased array
- < 20 cm diameter</p>
- < 17 mm thick</p>
- Full scan capabilities
 - ◆ 360° Azimuth
 - ◆ 20° to 60° in elevation
- Full polarization tracking capabilities
 - Over 360°
- Customized MMIC design
- Monolithic structure
- Suitable for mass production in automotive market

- Major complexity factor in phased array are the control components for the polarization tracking and 2-axis scanning
- Reducing the complexity of the control components reduces the cost of the antenna
- The Natalia innovative architecture offers:
 - Reduction of the required number of phase shifters bits to achieve high precision scanning thanks to the traXpol concept (Patent filing in progress),
 - Beam steering and polarisation tracking are controlled by the same phase shifters
- The original design of the antenna allows to reduce the number of phase shifter bits (reduction of MMIC size) without decreasing the precision on beam and polarisation control

- New on-vehicle telematics and entertainment services need large amount of data exchange to and from automobiles
- Satellite communications systems are required to make several application possible and cost effective (e.g. pan-European broadcasting)
- We have presented some of the available solutions suitable for different satellite system and combining communication and navigation services